

# HYD 3 .... 6K-EP Instrukcja montażu i obsługi

Wersja 01 | Maj 2022 Język polski



HYD 3000-EP, HYD 3680-EP, HYD 4000-EP, HYD 4600-EP, HYD 5000-EP, HYD 5500-EP, HYD 6000-EP



# Spis treści

| 1 | Informa | cje o niniejszej instrukcji         | 5  |
|---|---------|-------------------------------------|----|
|   | 1.1     | Deklaracja praw autorskich          | 5  |
|   | 1.2     | Struktura instrukcji                | 6  |
|   | 1.3     | Zakres                              | 6  |
|   | 1.4     | Odbiorcy                            | 6  |
|   | 1.5     | Używane symbole                     | 6  |
| 2 | Podstav | vowe zasady bezpieczeństwa          | 8  |
|   | 2.1     | Informacje dotyczące bezpieczeństwa | 8  |
|   | 2.2     | Symbole i znaki                     | 13 |
| 3 | Cechy p | produktu                            | 15 |
|   | 3.1     | Informacje o produkcie              | 15 |
|   | 3.2     | Oznaczenia na urządzeniu            | 16 |
|   | 3.3     | Cechy funkcjonalne                  | 17 |
|   | 3.4     | Tryby zastosowania                  | 19 |
| 4 | Montaż  |                                     | 22 |
|   | 4.1     | Informacje dotyczące montażu        | 22 |
|   | 4.2     | Procedura montażu                   | 23 |
|   | 4.3     | Kontrola przed instalacją           | 23 |
|   | 4.4     | Złącza                              | 25 |
|   | 4.5     | Narzędzia                           | 26 |



|   | 4.6      | Miejsce montażu                                   |    |
|---|----------|---------------------------------------------------|----|
|   | 4.7      | Rozpakowywanie falownika                          | 31 |
|   | 4.8      | Montaż falownika                                  | 32 |
| 5 | Złącza e | elektryczne                                       | 33 |
|   | 5.1      | Instrukcje bezpieczeństwa                         | 33 |
|   | 5.2      | Podłączenie elektryczne                           | 36 |
|   | 5.3      | Podłączanie kabla PE                              | 36 |
|   | 5.4      | Podłączanie kabli DC                              | 38 |
|   | 5.5      | Podłączanie akumulatora                           | 41 |
|   | 5.6      | Podłączanie kabli zasilających AC                 | 43 |
|   | 5.7      | Funkcja ograniczania dopływu                      | 50 |
|   | 5.8      | Monitorowanie systemu                             | 51 |
|   | 5.9      | Instalacja adaptera WiFi, GPRS lub Ethernet       | 52 |
|   | 5.10     | Wielofunkcyjny port COM                           | 57 |
| 6 | Pierwsz  | e uruchomienie falownika                          | 69 |
|   | 6.1      | Test bezpieczeństwa przed pierwszym uruchomieniem | 69 |
|   | 6.2      | Kontrola przed włączeniem falownika               | 69 |
|   | 6.3      | Uruchamianie falownika                            | 70 |
|   | 6.4      | Ustawienia wstępne                                | 71 |
| 7 | Obsługa  | a urządzenia                                      | 76 |
|   | 7.1      | Panel sterowania i wyświetlacz                    | 76 |
|   | 7.2      | Ekran standardowy                                 | 77 |

| SPIS I RESC |
|-------------|
|-------------|



| 9 | Dane te | chniczne                                         | 102 |
|---|---------|--------------------------------------------------|-----|
|   | 8.2     | Konserwacja                                      | 101 |
|   | 8.1     | Rozwiązywanie problemów                          | 88  |
| 8 | Postępo | wanie w razie problemów                          | 88  |
|   | 7.4     | Struktura menu                                   | 83  |
|   | 7.3     | Energy Storage Mode (Tryb magazynowania energii) | 78  |



# 1 Informacje o niniejszej instrukcji

Niniejsza instrukcja zawiera ważne informacje dotyczące bezpieczeństwa, których należy przestrzegać podczas montażu i konserwacji urządzenia.

# Przed użyciem uważnie przeczytaj niniejszą instrukcję i zachowaj ją na przyszłość!

Niniejszą instrukcję należy traktować jako integralną część urządzenia. Instrukcję należy przechowywać w pobliżu urządzenia, także w przypadku przekazania go innemu użytkownikowi lub przeniesienia w inne miejsce.

# 1.1 Deklaracja praw autorskich

Prawa autorskie do niniejszej instrukcji należą do SOFARSOLAR. Nie wolno jej kopiować – ani częściowo, ani w całości – firmom lub osobom (dotyczy również oprogramowania itp.) i nie wolno powielać ani rozpowszechniać jej w jakiejkolwiek formie lub za pomocą jakichkolwiek środków.

SOFARSOLAR zastrzega sobie prawo do ostatecznej interpretacji. Niniejsza instrukcja może zostać zmieniona na podstawie informacji zwrotnych od użytkowników lub klientów. Najnowszą wersję można znaleźć na naszej stronie internetowej http://www.sofarsolar.com. Aktualna wersja została zaktualizowana dnia 20.07.2022.



# 1.2 Struktura instrukcji

Niniejsza instrukcja zawiera ważne informacje dotyczące bezpieczeństwa i montażu, których należy przestrzegać podczas montażu i konserwacji urządzenia.

# 1.3 Zakres

Niniejsza instrukcja produktu opisuje montaż, podłączenie elektryczne, pierwsze uruchomienie, konserwację i procedury usuwania usterek falowników HYD 3000 ... 6000-EP.

# 1.4 Odbiorcy

Niniejsza instrukcja przeznaczona jest dla specjalistów elektryków odpowiedzialnych za montaż i pierwsze uruchomienie falownika w instalacji PV oraz operatorów instalacji PV.

## 1.5 Używane symbole

Niniejsza instrukcja zawiera informacje dotyczące bezpiecznej obsługi i wykorzystuje symbole w celu zapewnienia bezpieczeństwa osób i mienia oraz sprawnej pracy falownika. Należy dokładnie zapoznać się z poniższymi objaśnieniami symboli, aby uniknąć obrażeń ciała lub uszkodzenia mienia.



## A NIEBEZPIECZEŃSTWO

Niezastosowanie się do zaleceń spowoduje śmierć lub poważne obrażenia.

 Postępuj zgodnie z ostrzeżeniami, aby uniknąć śmierci lub poważnych obrażeń!

## OSTRZEŻENIE

Niezastosowanie się do zaleceń może spowodować śmierć lub poważne obrażenia.

 Postępuj zgodnie z ostrzeżeniami, aby uniknąć poważnych obrażeń!

## A PRZESTROGA

Niezastosowanie się do zaleceń może spowodować obrażenia.

• Postępuj zgodnie z ostrzeżeniami, aby uniknąć kontuzji!

### UWAGA

# Niezastosowanie się do zaleceń może spowodować uszkodzenie mienia.

 Postępuj zgodnie z ostrzeżeniami, aby zapobiec uszkodzeniu lub zniszczeniu produktu.

## WSKAZÓWKA

 Zawiera wskazówki niezbędne do optymalnego działania produktu.



# 2 Podstawowe zasady bezpieczeństwa

## WSKAZÓWKA

 Jeśli po przeczytaniu poniższych informacji masz jakiekolwiek pytania lub problemy, prosimy o kontakt z SOFARSOLAR

Niniejszy rozdział zawiera szczegółowe informacje dotyczące bezpieczeństwa przy montażu i obsłudze urządzenia.

## 2.1 Informacje dotyczące bezpieczeństwa

Przeczytaj i upewnij się, że rozumiesz informacje zawarte w niniejszej instrukcji oraz zapoznaj się z odpowiednimi symbolami bezpieczeństwa w niniejszym rozdziale przed rozpoczęciem montażu urządzenia i usuwania wszelkich usterek.

Przed podłączeniem do sieci energetycznej należy uzyskać oficjalne zezwolenie lokalnego operatora sieci energetycznej zgodnie z odpowiednimi wymogami krajowymi i regionalnymi. Ponadto obsługą moga zajmować się wyłącznie wykwalifikowani elektrycy.

Jeśli konieczna jest konserwacja lub naprawa, skontaktuj się z najbliższym autoryzowanym centrum serwisowym. Skontaktuj się ze sprzedawcą, aby uzyskać informacje o najbliższym autoryzowanym centrum serwisowym. NIE wykonuj samodzielnie napraw urządzenia – może to prowadzić do odniesienia obrażeń lub uszkodzenia mienia. Przed montażem urządzenia lub przeprowadzeniem na nim konserwacji należy otworzyć przełącznik DC w celu przerwania



napięcia DC generatora fotowoltaicznego. Napięcie DC można również wyłączyć, otwierając przełącznik DC w skrzynce przyłączeniowej układu paneli. Niewykonanie tych czynności może skończyć się odniesieniem poważnych obrażeń.

#### 2.1.1 Kwalifikacje personelu

Personel odpowiedzialny za obsługę i konserwację urządzenia musi posiadać kwalifikacje, kompetencje i doświadczenie wymagane do wykonywania opisanych zadań, a jednocześnie być w stanie w pełni zrozumieć wszystkie informacje zawarte w instrukcji. Ze względów bezpieczeństwa montażem falownika może zajmować się wyłącznie wykwalifikowany elektryk, który:

- przeszedł szkolenie z zakresu bezpieczeństwa pracy oraz montażu i pierwszego uruchomienia instalacji elektrycznych;
- jest zaznajomiony z lokalnymi przepisami, normami i regulacjami operatora sieci.

SOFARSOLAR nie ponosi odpowiedzialności za zniszczenie mienia lub jakiekolwiek obrażenia osób spowodowane niewłaściwym użytkowaniem.

#### 2.1.2 Wymagania związane z instalacją

Falownik należy zamontować zgodnie z informacjami zawartymi w następnym rozdziale. Zamontuj falownik na odpowiednim obiekcie o wystarczającej nośności (np. ściany, ramy PV itp.) i upewnij się, że falownik jest ustawiony w pozycji pionowej. Wybierz odpowiednie miejsce do montażu falownika. Upewnij się, że jest wystarczająco dużo miejsca na wyjście awaryjne, które jest odpowiednie do



konserwacji. Należy zapewnić odpowiednią wentylację, aby umożliwić cyrkulację powietrza do chłodzenia falownika.

#### 2.1.3 Wymagania związane z transportem

Fabryczne opakowanie zostało specjalnie zaprojektowane, aby zapobiec uszkodzeniom podczas transportu, tj. gwałtownym wstrząsom, wilgoci i wibracjom. Nie wolno jednak montować urządzenia, jeśli jest widocznie uszkodzone. W takim przypadku należy natychmiast powiadomić odpowiedzialną firmę transportową.

#### 2.1.4 Oznaczenia na urządzeniu

Etykiety NIE mogą być zasłonięte przedmiotami i ciałami obcymi (szmatami, pudłami, urządzeniami itp.). Należy je regularnie czyścić i zapewnić ich widoczność.

#### 2.1.5 Podłączenie elektryczne

Podczas pracy przy falowniku należy przestrzegać wszystkich obowiązujących przepisów dotyczących instalacji elektrycznych.

#### A NIEBEZPIECZEŃSTWO

#### Niebezpieczne napięcie DC

 Przed wykonaniem podłączenia elektrycznego przykryj moduły fotowoltaiczne nieprzezroczystym materiałem lub odłącz generator fotowoltaiczny od falownika. Promieniowanie słoneczne spowoduje wygenerowanie niebezpiecznego napięcia przez generator fotowoltaiczny!



## A NIEBEZPIECZEŃSTWO

#### Niebezpieczeństwo porażenia prądem!

 Wszystkie instalacje i połączenia elektryczne mogą być wykonywane wyłącznie przez przeszkolonych elektryków!

### WAŻNE

#### Zezwolenie na zasilanie sieci

 Przed podłączeniem falownika do publicznej sieci energetycznej należy uzyskać zezwolenie lokalnego operatora sieci energetycznej.

## WSKAZÓWKA

#### Unieważnienie gwarancji

Nie otwieraj falownika ani nie usuwaj żadnych etykiet.
 W przeciwnym razie firma SOFARSOLAR nie przyjmie roszczeń gwarancyjnych.

#### 2.1.6 Obsługa

### A NIEBEZPIECZEŃSTWO

#### Porażenie prądem

- Kontakt z siecią elektryczną lub zaciskami urządzenia może spowodować porażenie prądem lub pożar!
- Nie dotykaj zacisku ani przewodu podłączonego do sieci elektrycznej.
- Należy przestrzegać wszystkich instrukcji i dokumentów bezpieczeństwa, które odnoszą się do podłączenia do sieci.



## A PRZESTROGA

#### Poparzenie spowodowane nagrzaniem obudowy

- Podczas pracy falownika kilka elementów wewnętrznych bardzo się nagrzewa.
- Należy zawsze nosić rękawice ochronne!
- Należy uniemożliwić dzieciom dostęp do urządzenia.

#### 2.1.7 Serwis i konserwacja

#### A NIEBEZPIECZEŃSTWO

#### Niebezpieczne napięcie!

- Przed przystąpieniem do jakichkolwiek prac naprawczych należy najpierw wyłączyć wyłącznik automatyczny AC pomiędzy falownikiem a siecią energetyczną, a następnie wyłączyć przełącznik DC.
- Po wyłączeniu wyłącznika automatycznego AC i przełącznika DC należy odczekać co najmniej 5 minut przed rozpoczęciem jakichkolwiek prac konserwacyjnych lub naprawczych.

#### WAŻNE

#### Nieautoryzowane naprawy!

- Po usunięciu wszelkich usterek falownik powinien być ponownie w pełni sprawny. W przypadku konieczności naprawy należy skontaktować się z lokalnym autoryzowanym centrum serwisowym.
- NIE wolno otwierać wewnętrznych elementów falownika bez odpowiedniego zezwolenia. Firma Shenzhen SOFARSOLAR Co., Ltd. nie ponosi odpowiedzialności za jakiekolwiek powstałe straty lub uszkodzenia.



# 2.2 Symbole i znaki

## A PRZESTROGA

Uwaga na zagrożenie poparzeniem spowodowane gorącą obudową!

• Podczas pracy falownika wolno dotykać tylko wyświetlacza i przycisków, ponieważ obudowa może być nagrzana.

### UWAGA

#### Wykonać uziemienie!

- Generator fotowoltaiczny musi być uziemiony zgodnie z wymaganiami lokalnego operatora sieci energetycznej!
- Ze względu na bezpieczeństwo osobiste zalecamy niezawodne uziemienie wszystkich ram modułów fotowoltaicznych i falowników instalacji fotowoltaicznej.

## ▲ OSTRZEŻENIE

#### Uszkodzenia z powodu przepięcia!

 Upewnij się, że napięcie wejściowe nie przekracza maksymalnego dopuszczalnego napięcia. Przepięcie może spowodować długotrwałe uszkodzenie falownika, a także inne uszkodzenia, które nie są objęte gwarancją!

### 2.2.1 Symbole na falowniku

Na falowniku można znaleźć kilka symboli dotyczących bezpieczeństwa. Przeczytaj i upewnij się, że rozumiesz opisy symboli przed rozpoczęciem montażu.

#### PODSTAWOWE ZASADY BEZPIECZEŃSTWA



| Symbol       | Opis                                                                                                                                                                       |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Smin Smin    | W falowniku obecne jest napięcie szczątkowe!<br>Przed otwarciem falownika należy odczekać pięć<br>minut, aby upewnić się, że kondensator został<br>całkowicie rozładowany. |
| 4            | Ostrzeżenie! Niebezpieczeństwo porażenia<br>prądem                                                                                                                         |
| <u>sss</u>   | Ostrzeżenie! Gorąca powierzchnia                                                                                                                                           |
| CE           | Produkt zgodny z wytycznymi UE                                                                                                                                             |
| ( <u> </u>   | Punkt podłączenia do uziemienia                                                                                                                                            |
| i            | Przeczytaj instrukcję przed montażem falownika                                                                                                                             |
| IP           | Stopień ochrony urządzenia zgodny z EN 60529                                                                                                                               |
| +-           | Bieguny dodatnie i ujemne napięcia wejściowego<br>DC                                                                                                                       |
| <u> </u>     | Falownik należy zawsze transportować<br>i przechowywać ze strzałkami skierowanymi do<br>góry                                                                               |
| $\bigotimes$ | RCM (australijski znak zgodności z przepisami)<br>Produkt spełnia wymagania obowiązujących<br>norm australijskich.                                                         |



# 3 Cechy produktu

W niniejszym rozdziale opisano cechy, wymiary i poziomy wydajności produktu.

# 3.1 Informacje o produkcie

HYD 3000 ... 6000-EP to sprzężony z siecią falownik fotowoltaiczny magazynujący energię, który może również dostarczać energię w trybie autonomicznym. HYD 3000 ... 6000-EP może pełnić funkcje zarządzania energią, które obejmują różnorodne scenariusze zastosowań.



Falowniki HYD 3000 ... 6000-EP mogą być używane tylko z modułami fotowoltaicznymi, które nie wymagają uziemienia jednego z biegunów.



Podczas normalnej pracy prąd roboczy nie może przekraczać wartości granicznych określonych w danych technicznych.

Wyboru opcjonalnych części falownika powinien dokonać wykwalifikowany technik, który zapoznał się z cechami instalacji.

## Wymiary produktu

HYD 3...6K-EP:



Wspornik ścienny:



# 3.2 Oznaczenia na urządzeniu

Nie wolno zakrywać ani usuwać oznaczeń!





# 3.3 Cechy funkcjonalne

Prąd stały wytwarzany przez generator fotowoltaiczny może być wykorzystywany zarówno do zasilania sieci, jak i ładowania akumulatora.

Akumulator może dostarczać energię do sieci lub odbiorcy. Tryb awaryjnego zasilania prądem (EPS) może zapewnić urządzeniom zasilanym obciążeniem indukcyjnym, takim jak systemy klimatyzacji lub lodówki, automatyczny czas przełączania wynoszący poniżej 10 milisekund.

### 3.3.1 Funkcje

- Elastyczne przełączanie między trybem sieciowym a magazynowaniem energii
- Prąd ładowania/rozładowania do 100 A
- Praca równoległa z maksymalnie 10 jednostkami
- Monitorowanie za pomocą RS485/WiFi/Bluetooth, opcjonalnie: Ethernet





## 3.3.2 Schemat blokowy układu elektrycznego



# 3.4 Tryby zastosowania

#### 3.4.1 Typowy system magazynowania energii

Typowy system magazynowania energii z panelami fotowoltaicznymi i zespołami akumulatorów, podłączony do sieci.



## 3.4.2 System bez połączenia PV

W tej konfiguracji panele fotowoltaiczne nie są podłączone, a

akumulator jest ładowany z sieci.



#### CECHY PRODUKTU



#### 3.4.3 System bez akumulatorów

W tej konfiguracji moduły akumulatorów można dodać później.



## 3.4.4 Tryb zapasowy (bez sieci)

Przy braku połączenia z siecią panele fotowoltaiczne i akumulator dostarczą energię elektryczną do zapewnienia obciążenia krytycznego.





## 3.4.5 System z kilkoma falownikami równoległymi

Można podłączyć równolegle do 10 falowników w celu obsługi prądu EPS o mocy do 60 kVA.



## UWAGA

- W przypadku przełączania równoległego kilku urządzeń zaleca się stosowanie wspólnego rozłącznika AC dla podłączonych obciążeń zarówno na złączu LOAD, jak i GRID.
- Aby równomiernie rozłożyć obciążenia między falownikami, długość kabla między każdym wyjściem a obciążeniem musi być taka sama.
- Jeżeli maksymalna moc pozorna obciążenia wynosi ponad 110% mocy znamionowej falownika, urządzenia nie wolno podłączać przez terminal AC LOAD – należy podłączyć je bezpośrednio do sieci.



# 4 Montaż

# 4.1 Informacje dotyczące montażu

#### ▲ NIEBEZPIECZEŃSTWO

#### Zagrożenie pożarowe:

- NIE montować falownika na materiałach łatwopalnych.
- NIE montować falownika w miejscu, w którym przechowywane są materiały łatwopalne lub wybuchowe.

## A PRZESTROGA

#### Zagrożenie poparzeniem

 NIE montować falownika w miejscach, w których może zostać przypadkowo dotknięty. Obudowa i radiator mogą się bardzo nagrzewać podczas pracy falownika.

#### UWAGA

#### Wymagania dotyczące warunków otoczenia

- Wybierz łatwo dostępne miejsce, które jest suche, czyste i uporządkowane.
- Zakres temperatury otoczenia: -30°C-60°C.
- Wilgotność względna: 0–100% (bez kondensacji).
- Falownik należy zainstalować w dobrze wentylowanym miejscu.
- Maksymalna wysokość n.p.m: 4000 m.





#### WAŻNE

#### Waga urządzenia

- Podczas transportu i przenoszenia należy wziąć pod uwagę masę falownika.
- Wybierz odpowiednie miejsce montażu i -powierzchnię.
- Montażem falownika powinny zająć się co najmniej dwie osoby.
- Nie stawiać falownika do góry nogami.

# 4.2 Procedura montażu

Montaż mechaniczny wykonuje się w następujący sposób:

- 1. Sprawdź falownik przed montażem
- 2. Przygotuj się do montażu
- 3. Wybierz miejsce montażu
- 4. Przetransportuj falownik
- 5. Zamontuj tylny panel
- 6. Zamontuj falownik

# 4.3 Kontrola przed instalacją

#### 4.3.1 Sprawdzanie zewnętrznych materiałów opakowaniowych

Materiały i elementy opakowania mogą ulec uszkodzeniu podczas transportu. Dlatego przed instalacją falownika należy sprawdzić zewnętrzne materiały opakowaniowe. Sprawdź zewnętrzne opakowanie pod kątem uszkodzeń, np. dziur i pęknięć. W przypadku stwierdzenia jakichkolwiek uszkodzeń nie należy rozpakowywać



falownika i natychmiast skontaktować się z firmą transportową i/lub sprzedawcą. Zaleca się usunięcie materiału opakowaniowego w ciągu 24 godzin przed montażem falownika.

#### 4.3.2 Sprawdzanie kompletności dostawy

Po rozpakowaniu falownika sprawdź, czy elementy zestawu są nienaruszone i kompletne. W przypadku jakichkolwiek uszkodzeń lub brakujących elementów należy skontaktować się ze sprzedawcą hurtowym.

| Nr | llustracja          | Opis                                                                  | Liczba |
|----|---------------------|-----------------------------------------------------------------------|--------|
| 01 | A Part - F          | Falownik HYD 3000 6000-EP                                             | 1      |
| 02 |                     | Wspornik ścienny                                                      | 1      |
| 03 | Chille              | Zacisk wejściowy PV+                                                  | 2      |
| 04 | C), D)              | Zacisk wejściowy PV-                                                  | 2      |
| 05 | And a second second | Gniazdo styku zaciskowego                                             | 2      |
| 06 | J.                  | Wtyk styku zaciskowego                                                | 2      |
| 07 |                     | Zacisk wejściowy BAT-                                                 | 1      |
| 08 |                     | Zacisk wejściowy BAT+                                                 | 1      |
| 09 | -CO                 | Śruby z łbem sześciokątnym M6                                         | 2      |
| 10 | 0                   | Kołki rozporowe używane do<br>mocowania wspornika na ścianie<br>M8*80 | 4      |
| 11 | AL P                | Złącze AC                                                             | 1      |



| Nr | llustracja | Opis                                        | Liczba |
|----|------------|---------------------------------------------|--------|
| 12 |            | Złącze napięcia wyjściowego                 | 1      |
| 13 | 6×8:8×8    | Złącze portu połączeniowego                 | 1      |
| 14 |            | Terminal 8-stykowy                          | 1      |
| 15 | -          | Przekładnik prądowy z dzielonym<br>rdzeniem | 1      |
| 16 |            | Złącze 16-stykowe COM                       | 1      |
| 17 |            | Kabel komunikacyjny                         | 1      |
| 18 |            | Adapter WiFi                                | 1      |
| 19 |            | Instrukcja                                  | 1      |
| 20 |            | Karta gwarancyjna                           | 1      |
| 21 |            | Świadectwo jakości                          | 1      |

# 4.4 Złącza

## A PRZESTROGA

#### Uszkodzenia powstałe podczas transportu

 Przed instalacją należy dokładnie sprawdzić opakowanie produktu i złącza.





| 1 | Zaciski wejściowe<br>akumulatora | 2    | Przełącznik DC                  |
|---|----------------------------------|------|---------------------------------|
| 3 | Zaciski wejściowe PV             | 4    | USB/WiFi                        |
| 5 | Port połączeniowy 0              | 6    | Port połączeniowy 1             |
| 7 | СОМ                              | 8    | Port złącza sieci energetycznej |
| 9 | Port połączeniowy obciążenia     | (10) | Zewnętrzny terminal LCD         |

# 4.5 Narzędzia

Przygotuj narzędzia potrzebne do montażu i podłączenia elektrycznego.

| Nr | Narzędzie | Model                                                   | Funkcja                                       |
|----|-----------|---------------------------------------------------------|-----------------------------------------------|
| 01 |           | Wiertarka udarowa<br>Zalecana średnica<br>wiertła: 6 mm | Służy do<br>wiercenia<br>otworów<br>w ścianie |
| 02 | 13        | Wkrętak                                                 | Okablowanie                                   |
| 03 | «         | Śrubokręt krzyżakowy                                    | Służy do<br>wykręcania<br>i wkręcania śrub    |



| Nr | Narzędzie | Model                                         | Funkcja                                                                                   |
|----|-----------|-----------------------------------------------|-------------------------------------------------------------------------------------------|
|    |           |                                               | zacisku AC                                                                                |
| 04 | dio C     | Narzędzie do demontażu                        | Służy do<br>demontowania<br>terminala PV                                                  |
| 05 |           | Szczypce do ściągania<br>izolacji z przewodów | Służą do<br>ściągania izolacji<br>z przewodów                                             |
| 06 |           | Klucz imbusowy 4 mm                           | Służy do<br>przekręcania<br>śruby w celu<br>podłączenia<br>tylnego panelu do<br>falownika |
| 07 |           | Szczypce zaciskowe                            | Służą do<br>zaciskania kabli<br>zasilających                                              |
| 08 |           | Multimetr                                     | Służy do<br>sprawdzania<br>uziemienia                                                     |
| 09 |           | Klucz (≥ 32mm)                                | Służy do<br>dokręcania<br>kołków<br>rozporowych                                           |
| 10 |           | Pisak                                         | Służy do<br>oznakowywania                                                                 |

#### MONTAŻ



| Nr | Narzędzie | Model                         | Funkcja                                          |
|----|-----------|-------------------------------|--------------------------------------------------|
| 11 |           | Taśma pomiarowa               | Służy do pomiaru<br>odległości                   |
| 12 | 0-1307    | Poziomica alkoholowa          | Służy do<br>wyrównania<br>wspornika<br>ściennego |
| 13 |           | Rękawice antystatyczne<br>ESD | Dla montera                                      |
| 14 |           | Okulary ochronne              | Dla montera                                      |
| 15 |           | Maska przeciwpyłowa           | Dla montera                                      |

# 4.6 Miejsce montażu

Wybierz odpowiednią pozycję do instalacji falownika. Upewnij się, że zostały spełnione następujące wymagania:







Minimalne odległości w przypadku pojedynczych falowników HYD 3000 ... 6000-EP:



Minimalne odległości w przypadku kilku falowników HYD 3000 ... 6000-EP:







#### UWAGA

- Wybierz łatwo dostępne miejsce, które jest suche, czyste i uporządkowane.
- Zakres temperatury otoczenia: -30°C-60°C.
- Wilgotność względna: 0–100% (bez kondensacji).
- Falownik należy zainstalować w dobrze wentylowanym miejscu.
- Maksymalna wysokość n.p.m: 4000 m.



# 4.7 Rozpakowywanie falownika

1. Otwórz opakowanie i chwyć falownik obiema rękami od spodu po bokach.





2. Wyjmij falownik z opakowania i przenieś go do miejsca montażu.

### UWAGA

#### Uszkodzenia mechaniczne

- Aby zapobiec obrażeniom osób i uszkodzeniom urządzenia, upewnij się, że podczas przenoszenia falownik jest wyważony – jest bardzo ciężki.
- Nie należy umieszczać falownika na jego złączach, ponieważ nie są one zaprojektowane do utrzymywania takiego ciężaru. Połóż falownik poziomo na podłożu.
- W przypadku odkładania falownika na ziemię, umieść pod nim piankę lub papier, aby chronić obudowę.

#### 4.8 Montaż falownika

3.

- 1. Przytrzymaj wspornik ścienny w wybranym miejscu i zaznacz trzy otwory. Odłóż wspornik i wywierć otwory.
- 2. Włóż cały kołek pionowo do otworu.

Przymocuj tylny panel do ściany za pomocą czterech śrub.

- Umieść falownik we wsporniku ściennym. Zabezpiecz falownik, 4. przymocowując go do wspornika ściennego za pomocą śrub M6.
- 5. Falownik można zabezpieczyć, przymocowując go do uchwytu ściennego za pomocą blokady.









# 5 Złącza elektryczne

## 5.1 Instrukcje bezpieczeństwa

W niniejszym rozdziale opisano złącza elektryczne falownika HYD 3000 ... 6000-EP. Przeczytaj niniejszy rozdział dokładnie i uważnie przed podłączeniem kabli.

## A NIEBEZPIECZEŃSTWO

#### Napięcie elektryczne na złączach DC

 Upewnij się, że przełącznik DC jest WYŁĄCZONY przed wykonaniem połączenia elektrycznego. Wynika to z tego, że ładunek elektryczny pozostaje w kondensatorze po wyłączeniu przełącznika DC. Dlatego musi minąć co najmniej 5 minut, zanim kondensator rozładuje się.

## A NIEBEZPIECZEŃSTWO

#### Napięcie elektryczne

 Moduły fotowoltaiczne generują energię elektryczną, gdy są wystawione na działanie promieni słonecznych, co może stwarzać ryzyko porażenia prądem. Dlatego przed podłączeniem do kabla zasilania wejściowego DC przykryj moduły fotowoltaiczne nieprzezroczystym materiałem.



#### **UWAGA**

#### Kwalifikacje

 Instalację i konserwację falownika powinien przeprowadzić elektryk.

## UWAGA

 Napięcie otwartego obwodu modułów podłączonych szeregowo nie może być większe niż 600 V DC.

Podłączone moduły fotowoltaiczne muszą być zgodne z normą IEC 61730 klasa A.

| Prąd zwarciowy PV (maksimum absolutne)     |             | 18,0 A /18,0 A |
|--------------------------------------------|-------------|----------------|
|                                            | HYD 3000-EP | 15 A           |
| Maksymalne zabezpieczenie<br>nadpradowe AC | HYD 3680-EP | 16 A           |
|                                            | HYD 4000-EP | 20 A           |
|                                            | HYD 4600-EP | 20,9 A         |
| 1 (                                        | HYD 5000-EP | 21,7 A         |
|                                            | HYD 5500-EP | 25 A           |
|                                            | HYD 6000-EP | 27,3 A         |

Decydująca klasyfikacja napięcia (DVC) to napięcie w obwodzie, które występuje stale między dwoma dowolnymi częściami pod napięciem



podczas prawidłowego użytkowania w najgorszym możliwym przypadku:

| Interfejs                    | DVC  |
|------------------------------|------|
| Port złącza zasilania DC     | DVCC |
| Port złącza AC               | DVCC |
| Port podłączenia akumulatora | DVCC |
| Port połączeniowy obciążenia | DVCC |
| Interfejs USB/WiFi           | DVCA |
| Interfejs COM                | DVCA |
| Port połączeniowy            | DVCA |

## Informacje o okablowaniu

| Składnik                                    | Opis                                      | Zalecany typ<br>kabla | Zalecany rozmiar<br>kabla <b>(mm</b> ²) |
|---------------------------------------------|-------------------------------------------|-----------------------|-----------------------------------------|
| + BATTERY -                                 | + : Dodatni kabel<br>akumulatora litowego | Zewnętrzny            | 16 20                                   |
|                                             | - : Ujemny kabel<br>akumulatora litowego  | miedziany             | 10 - 20                                 |
| PV1<br>+ (○)<br>- (○)<br>(○) + (○)<br>(○) - | + : Dodatni kabel<br>modułu PV            | Kehel DV              | 1 6                                     |
|                                             | - : Ujemny kabel<br>modułu PV             | Nabel PV              | 4 - 0                                   |



| AC LOAD | Obciążeni<br>e — | L  | Zewnętrzny<br>wielożyłowy kabel 4 – 6<br>miedziany |       |
|---------|------------------|----|----------------------------------------------------|-------|
|         |                  | Ν  |                                                    | 4 - 6 |
|         |                  | PE |                                                    |       |
| AC GRID | AC               | L  | Zewnętrzny<br>wielożyłowy kabel 5 – 8              |       |
|         |                  | Ν  |                                                    | 5 – 8 |
|         |                  | PE | miedziany                                          |       |

# 5.2 Podłączenie elektryczne

Podłączenie elektryczne wykonuje się w następujący sposób:

- 1. Podłącz kabel PE
- 2. Podłącz kabel wejściowy DC
- 3. Podłącz kabel zasilania wyjściowego AC
- 4. Podłącz kabel komunikacyjny (opcjonalnie)

# 5.3 Podłączanie kabla PE

Podłącz falownik do szyny wyrównania potencjałów za pomocą ochronnego kabla uziemiającego (PE) jako uziemienia.


#### UWAGA

#### Uziemienie biegunów jest niedopuszczalne!

 Ponieważ falownik jest beztransformatorowy, bieguny dodatni i ujemny generatora fotowoltaicznego NIE mogą być uziemione. W przeciwnym razie falownik ulegnie awarii. W systemie PV wszystkie metalowe części niebędące pod napięciem (np. ramy modułów PV, stojak PV, obudowa skrzynki przyłączeniowej, obudowa falownika itp.) wymagają uziemienia. Kabel powinien mieć żółto-zielony kolor.

Aby podłączyć kabel PE, wykonaj następujące czynności:

1. Usuń izolację kabla. Do użytku na zewnątrz zaleca się uziemienie kabli o przekroju  $\geq 4 \text{ mm}^2$ ).



2. Zaciśnij kabel w zacisku pierścieniowym:







 Zamontuj zaciskany zacisk pierścieniowy i podkładkę za pomocą śruby M5 i dokręć je momentem 3 Nm za pomocą klucza imbusowego.



- Wkręt M5
   Zacisk pierścieniowy
- ③ Otwór gwintowany

# 5.4 Podłączanie kabli DC

Należy zastosować kable o zalecanych wymiarach:

| Przekrój kabla (mm²) | Średnica         |                          |
|----------------------|------------------|--------------------------|
| Zakres               | Zalecana wartość | zewnętrzna<br>kabla (mm) |
| 4,0-6,0              | 4,0              | 4,5–7,8                  |

1. Usuń styki zaciskowe ze złączy dodatnich i ujemnych.



#### 2. Usuń izolację kabli:



- Włóż dodatnie i ujemne kable DC do odpowiednich dławików kablowych.
- Zaciśnij kable DC. Zaciśnięty kabel musi być w stanie wytrzymać siłę rozciągającą równą 400 Nm.



③ Dodatni kabel zasilający ④ Ujemny kabel zasilający

### A PRZESTROGA

#### Niebezpieczeństwo odwrócenia biegunowości!

 Upewnij się, że polaryzacja jest prawidłowa przed podłączeniem kabli do zacisków wejściowych DC!



- Włóż zaciśnięte kable DC do odpowiedniej obudowy złącza, aż usłyszysz kliknięcie.
- 6. Ponownie przykręć dławiki kablowe do obudowy złącza.
- Włóż dodatnie i ujemne złącza do odpowiednich zacisków wejściowych DC falownika, aż usłyszysz kliknięcie.



1 Blokowanie

### UWAGA

• Włóż zaślepki ochronne do nieużywanych złączy DC.

Aby odłączyć złącze, postępuj zgodnie z poniższymi instrukcjami.

#### ▲ PRZESTROGA

#### Niebezpieczeństwo wyładowania łukowego DC

 Przed wyjęciem złącza plus i minus upewnij się, że przełącznik DC jest ustawiony w pozycji OFF.

Aby usunąć złącza plus i minus z falownika, włóż klucz do zamka i naciśnij go z odpowiednią siłą, jak pokazano na poniższej ilustracji:





# 5.5 Podłączanie akumulatora

 Włóż złącza do portów akumulatora, a następnie wybierz odpowiedni kabel. Zalecana obciążalność prądowa kabla to co najmniej 125 A.



2. Podłącz kabel.





3. Obróć złącze zgodnie z ruchem wskazówek zegara do momentu jego zablokowania.



4. Podłącz ujemny kabel akumulatora, wykonując te same czynności.



5. Odłącz złącze, obracając je w kierunku przeciwnym do ruchu wskazówek zegara.





W przypadku akumulatorów z układem BMS (na przykład akumulatorów litowo-jonowych) należy połączyć magistralę CAN lub RS485 z układem zarządzania akumulatorem.

Falownik będzie korzystał z magistrali CAN lub RS485 w zależności od wyboru akumulatora w menu LCD falownika.

# 5.6 Podłączanie kabli zasilających AC

Podłącz falownik do obciążeń krytycznych w porcie EPS i dystrybutora zasilania AC lub sieci energetycznej za pomocą kabli zasilających AC.

## A PRZESTROGA

#### Przyłącze AC

- Każdy falownik musi mieć własny wyłącznik automatyczny.
- Nie podłączać żadnych odbiorników między falownikiem a wyłącznikiem!
- Urządzenie odłączające AC musi być łatwo dostępne.

## WSKAZÓWKA

- Falownik HYD 3000 ... 6000-EP posiada wbudowane RCD (uniw. czułe zabezpieczenie różnicowoprądowe). Jeśli wymagane jest zewnętrzne RCD, zalecamy RCD typu A z prądem różnicowym 300 mA lub wyższym.
- Pamiętaj, aby przestrzegać krajowych przepisów i regulacji dotyczących instalacji zewnętrznych przekaźników lub wyłączników automatycznych!

#### ZŁĄCZA ELEKTRYCZNE



#### Wymiarowanie

Kable wyjściowe AC to kable trójżyłowe do zastosowania na zewnątrz. Aby uprościć proces instalacji, użyj elastycznych kabli. Zalecany rozmiar kabla wynosi 4–6mm<sup>2</sup>.

Kabel AC powinien być odpowiednio zwymiarowany, aby straty mocy w kablu AC były mniejsze niż 1% mocy wyjściowej znamionowej. Jeśli rezystancja kabla AC jest zbyt wysoka, napięcie AC wzrośnie, co może spowodować odłączenie falownika od sieci energetycznej. Zależność między mocą upływu w kablu AC a długością kabla, przekrojem poprzecznym, pokazano na poniższej ilustracji:



**5.6.1** Złącze obciążeniowe AC

## A PRZESTROGA

#### Napięcie elektryczne

 Upewnij się, że sieć została wyłączona przed odłączeniem złącza AC.



 Wybierz odpowiedni kabel. Usuń warstwę izolacyjną kabla wyjściowego AC za pomocą szczypiec do ściągania izolacji i zgodnie z poniższą ilustracją:



 Zdemontuj złącze zgodnie z poniższą ilustracją, poprowadź kabel wyjściowy AC przez dławik kablowy.



 Podłącz kabel AC zgodnie z poniższymi wymogami i dokręć zacisk za pomocą śrubokrętu krzyżakowego Phillips.





| Insert the corresponding<br>holes and tighten the screws |
|----------------------------------------------------------|
|                                                          |
|                                                          |
|                                                          |
|                                                          |

| Podłączenie | Kabel                                 |
|-------------|---------------------------------------|
| PE          | Kabel uziemiający (żółto-<br>zielony) |
| L           | Fazowy (brązowy)                      |
| Ν           | Przewód zerowy (niebieski)            |

- 4. Zamontuj obudowę złącza i dokręć mocno dławik kablowy.
- Podłącz złącze AC LOAD do przyłącza AC LOAD falownika, obracając je zgodnie z ruchem wskazówek zegara, aż zablokuje się na swoim miejscu.





 Odłącz złącze AC LOAD, przytrzymując przycisk odblokowania i obracając złącze w kierunku przeciwnym do ruchu wskazówek zegara do pozycji "odblokowania".





#### Napięcie elektryczne

 Upewnij się, że sieć została wyłączona przed odłączeniem złącza AC.

## 5.6.2 Złącze AC

 Wybierz odpowiedni kabel. Usuń warstwę izolacyjną kabla wyjściowego AC za pomocą szczypiec do ściągania izolacji i zgodnie z poniższą ilustracją.







2. Przełóż przewody przez otwór w terminalu;



Zablokuj przewody, dokręcając śrubę za pomocą sześciokątnego klucza nasadowego.





4. Popchnij terminal do przodu, aż usłyszysz "kliknięcie\*".



5. Podłącz złącze obciążenia AC do przyłącza obciążenia AC.



Aby odłączyć złącze, użyj narzędzia do demontażu i wykonaj następujące czynności.





# 5.7 Funkcja ograniczania dopływu

Zabezpieczenie antyzwrotne to nazwa SOFARSOLAR na funkcję ograniczania dopływu prądu (dopływu zwrotnego) do sieci. Gdy ta funkcja jest włączona, moc zasilania punktu wspólnego przyłączenia (PCC) będzie ograniczona do ustawionego ograniczenia mocy zwrotnej.

Możliwe jest jednoczesne użycie funkcji sztywnego i zwykłego sterowania ograniczenia antyzwrotnego. Jednak przy włączonym sztywnym ograniczeniu antyzwrotnym ustawienie ograniczenia zwykłego nie może przekraczać ograniczenia sztywnego. Jeśli moc zwrotna przekroczy wartość ograniczenia mocy zwrotnej, załączy się zabezpieczenie przed przeciążeniem.

W przypadku utraty sygnału komunikacyjnego z miernika energii moc wyjściowa falownika jest ograniczana do nastawy zwykłego ograniczenia dopływu zwrotnego, a zabezpieczenie zwarciowe nie zostanie wyzwolone. Gdy włączona jest funkcja sztywnego ograniczenia antyzwrotnego zwrotnego utrata sygnału w mierniku załącza zabezpieczenie zwarciowe.



#### UWAGA

- Funkcja zabezpieczenia antyzwrotnego = funkcja ograniczenia eksportu
- Dopływ zwrotny = moc eksportowana
- Sztywne ograniczenie antyzwrotne = sztywne ograniczenie dopływu
- Ograniczenie antyzwrotne = miękkie ograniczenie dopływu

## 5.8 Monitorowanie systemu

Falowniki HYD 3000 ... 6000-EP umożliwiają wykorzystanie różnych metod komunikacji do monitorowania systemu: RS485 lub adapter WiFi (w zestawie) Adapter GPRS, Ethernet (opcjonalnie)

#### 5.8.1 Sieć RS485

Możesz podłączyć urządzenia połączone za pośrednictwem RS485 do komputera lub rejestratora danych za pomocą adaptera USB–RS485.

#### 5.8.2 Adapter WiFi/GPRS/Ethernet

Po zainstalowaniu rejestratora falowniki mogą bezpośrednio przesyłać dane operacyjne, energetyczne i alarmowe do portalu monitorowania SOLARMAN.







# 5.9 Instalacja adaptera WiFi, GPRS lub Ethernet

- 1. Zdejmij wodoodporną osłonę WiFi/GPRS za pomocą śrubokręta.
- 2. Podłącz adapter WiFi, GPRS lub Ethernet.
- 3. Zamocuj moduł WiFi/GPRS za pomocą śrub.



| Wtyk | Opis  | Funkcja         |
|------|-------|-----------------|
| 1    | GND.S | Zasilanie USB - |
| 2    | DP    | Dane USB +      |
| 3    | DM    | Dane USB -      |
| 4    | VBUS  | Zasilanie USB + |
|      |       |                 |





# 5.9.1 Konfiguracja adaptera WiFi za pomocą przeglądarki internetowej

**Przygotowanie:** Adapter WiFi został zainstalowany zgodnie z poprzednim rozdziałem, a falownik SOFAR jest uruchomiony. Wykonaj następujące kroki, aby skonfigurować adapter WiFi:

- Połącz swój komputer lub smartfon z siecią WiFi adaptera WiFi. Nazwa tej sieci WiFi to "AP", po której następuje numer seryjny adaptera WiFi (patrz: tabliczka znamionowa). Po wyświetleniu monitu o hasło należy je wprowadzić – znajduje się ono na etykiecie adaptera WiFi (PWD).
- Otwórz przeglądarkę internetową i wprowadź adres 10.10.100.254.
- Zalecane przeglądarki: Internet Explorer 8+, Google Chrome 15+, Firefox 10+
- Wprowadź nazwę użytkownika i hasło oba domyślnie brzmią "admin". Zostanie otwarta strona "Status".
- Kliknij "Wizard", aby skonfigurować adapter WiFi i dać mu dostępu do internetu.

**Rezultat** Adapter WiFi zaczyna przesyłać dane do SolarMAN. Zarejestruj swój system na stronie <u>home.solarmanpv.com</u>. W tym celu wprowadź numer seryjny znajdujący się na adapterze rejestratora. Instalatorzy korzystają z portalu pod adresem <u>pro.solarmanpv.com</u>

## 5.9.2 Konfigurowanie adaptera WiFi za pomocą aplikacji

Aby pobrać aplikację, wyszukaj "SOLARMAN" w sklepie Apple lub Google Play lub użyj następujących kodów QR:





• SOLARMAN Smart (dla użytkowników końcowych):



• SOLARMAN Business(dla instalatorów):



## Kroki konfiguracji

- Po uruchomieniu aplikacji zarejestruj się jako nowy użytkownik lub wprowadź aktualne dane dostępowe SOLARMAN.
- 2. Utwórz nowy system i zapisz dane systemowe.
- Zeskanuj kod kreskowy rejestratora, aby przypisać falownik do systemu.
- Przejdź do nowo utworzonego systemu w celu skonfigurowania rejestratora (urządzenie/rejestrator)
- Wciśnij przycisk na adapterze WiFi i przytrzymaj go przez
   1 sekundę, aby aktywować tryb WPS wówczas smartfon będzie mógł się połączyć z adapterem WiFi.



- Teraz wybierz lokalną sieć WiFi, aby uzyskać dostęp do internetu i wprowadź hasło WiFi.
- Adapter WiFi jest skonfigurowany przy użyciu danych dostępowych.

### Status adaptera WiFi

Diody LED na adapterze WiFi informują o statusie:

| Dioda<br>LED | Status                       | Opis                                                        |
|--------------|------------------------------|-------------------------------------------------------------|
| NET:         | Komunikacja<br>z routerem    | <b>Wł.:</b> Połączenie z serwerem powiodło się              |
|              |                              | <b>Miga</b> (1 sek.): Połączenie z routerem<br>powiodło się |
|              |                              | <b>Miga</b> (0,1 sek.): Aktywny tryb WPS                    |
|              |                              | Wył.: Brak połączenia z routerem                            |
| СОМ          | Komunikacja<br>z falownikiem | <b>Miga</b> (1 sek.): Komunikacja<br>z falownikiem          |
|              |                              | <b>Wł.:</b> Rejestrator podłączony do falownika             |
|              |                              | Wył.: Brak połączenia z falownikiem                         |
| READY        | Status rejestratora          | <b>Miga</b> (1 sek.): Status normalny                       |
|              |                              | Miga (0,1 sek.): Trwa resetowanie                           |
|              |                              | Wył.: Status nieprawidłowy                                  |



### Przycisk resetowania

| Wciśnięcie klawisza | Opis                                  |
|---------------------|---------------------------------------|
| 1 sek.              | Tryb WPS                              |
| 5 sek.              | Ponowne uruchomienie                  |
| 10 sek.             | Ponowne uruchomienie<br>(resetowanie) |

### 5.9.3 Konfigurowanie adaptera GPRS

Adapter GPRS musi być wyposażony w kartę SIM:



Adapter GPRS należy skonfigurować za pomocą SOLARMAN Business. Postępuj zgodnie z poniższymi krokami.

- 1. Otwórz aplikację i wywołaj pozycję menu Narzędzia Bluetooth
- Zidentyfikuj adapter WiFi za pomocą numeru seryjnego i wybierz go.
- 3. Wywołaj pozycję "Niestandardowe"
- Wpisz polecenie AP+YZAPN="Nazwa APN operatora Twojej sieci"



- 5. (np. dla T-Mobile: AP+YZAPN=internet.v6.telekom)
- 6. Aby sprawdzić ustawienie, wywołaj AP+YZAPN
- Status można sprawdzić, przechodząc do "Statusu rejestratora" i pozycji menu "Odczyt". W zależności od operatora sieci będzie trzeba odczekać kilka minut, aż połączenie zostanie nawiązane a status normalny:

| Command succeed Logger State State Command succeed State Command succeed State Command succeed  More commands  Read ng Custom | that you click o<br>and logger?Ac<br>possible reaso | that you click on <u>Abnormal connection between device</u><br>and <u>logger</u> )According to the clues to troubleshoot<br>possible reasons |               |            |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|
| Logger State<br>SM card ICCI0 Network Registry Master Server Info.<br>Standby Server Info.<br>Standby Server Info.            | Command success                                     | d                                                                                                                                            |               |            |
| SM card ICOD Network Registry Master Server Info.<br>Standby Server Info.<br>More commands<br>Read ng Custom                  | Logger Status                                       |                                                                                                                                              | Logger Adapta | tion Type  |
| Standby Server Info.<br>Nore commands<br>Read ng Custom                                                                       | SIM card ICCID                                      | Network Registry                                                                                                                             | Master Se     | ever info. |
| Read Read Custom                                                                                                              | Standby Server Info                                 |                                                                                                                                              |               |            |
| Read ng Custom                                                                                                                |                                                     | More com                                                                                                                                     | vnends        |            |
|                                                                                                                               | Read                                                |                                                                                                                                              | ng            | Custom     |
|                                                                                                                               | 111                                                 | 0                                                                                                                                            |               | <          |

### 5.9.4 Konfigurowanie adaptera Ethernet

Adapter Ethernet jest standardowo dostarczany z DHCP, więc automatycznie otrzymuje adres IP z routera.

Jeśli chcesz ustawić stały adres IP, połącz komputer z adapterem Ethernet i otwórz stronę konfiguracji za pośrednictwem adresu internetowego **10.10.100.254**.

# 5.10 Wielofunkcyjny port COM

Poniżej znajduje się interfejs portu COM HYD 3000 ... 6000-EP:



#### ZŁĄCZA ELEKTRYCZNE



| Wtyk | Opis     | Funkcja                                        | Opis                                        |  |
|------|----------|------------------------------------------------|---------------------------------------------|--|
| 1    | CANH     | CAN, dane wysokie                              |                                             |  |
| 2    | CANL     | CAN, dane niskie                               | Komunikasia - PMS                           |  |
| 3    | 485-2TX+ | Sygnał różnicowy RS485 +                       |                                             |  |
| 4    | 485-2TX- | Sygnał różnicowy RS485 –                       | _                                           |  |
| 5    | 485-1TX+ | Sygnał różnicowy RS485 +                       | Monitorowanie                               |  |
| 6    | 485-1TX- | Sygnał różnicowy RS485 –                       | systemu<br>przewodowego lub<br>równoległego |  |
| 7    | GND-S    | Interfejsy logiczne (DRMS)                     |                                             |  |
| 8    | DRMS1/5  | mają zastosowanie do                           | Połączenia interfejsu<br>logicznego         |  |
| 9    | DRMS2/6  | bezpieczeństwa:                                |                                             |  |
| 10   | DRMS3/7  | Australia (AS4777)                             |                                             |  |
| 11   | DRMS4/8  | Niemcy (4105)                                  |                                             |  |
| 12   | DRMS0    |                                                |                                             |  |
| 13   | CT-      | Czujnik prądu wyprowadza<br>elektrodę ujemną   | Draukagag CT                                |  |
| 14   | CT+      | Czujnik prądu wyprowadza<br>elektrodę dodatnią |                                             |  |
| 15   | RS485-B  | Sygnał różnicowy RS485 +                       | Monitorowanie                               |  |
| 16   | RS485-A  | Sygnał różnicowy RS485 -                       | falownika i<br>sterowanie systemem          |  |



Aby podłączyć przewody, wykonaj następujące czynności:

Usuń osłonę kabla na długości 20–40 mm, a izolację kabli na długości 6–10 mm



- Podłącz przewody zgodnie z wymaganymi funkcjami i do właściwych pinów.
- Zamknij obudowę i zabezpiecz przepust kablowy, obracając go w prawo. Na koniec podłącz złącze.



Funkcje interfejsu komunikacyjnego należy ustawić na wyświetlaczu LCD. Sprawdź rozdział 7.



#### 5.10.1 RS485

Przy konieczności monitorowania kilku falowników i sterowania nimi przewody RS485 należy połączyć łańcuchowo.

#### UWAGA

- Linia RS485 nie może być dłuższa niż 1000 m
- Przypisz każdemu inwerterowi własny adres Modbus (od 1 do 31), korzystając z wyświetlacza LCD.



## 5.10.2 Interfejs logiczny (DRM)

Definicje wtyków interfejsu logicznego i połączeń przełączających są następujące:



Funkcję interfejsu logicznego należy ustawić na wyświetlaczu LCD. Należy przestrzegać etapów obsługi opisanych w rozdziale 7. Wtyki interfejsu logicznego są zdefiniowane zgodnie z różnymi specyfikacjami standardowymi.

#### Interfejs logiczny do AS/NZS 4777.2:2015

znany również jako tryby reagujące na zapotrzebowanie falownika (DRM)

Falownik rozpoznaje wszystkie obsługiwane polecenia reakcji na zapotrzebowanie i inicjuje reakcję w ciągu dwóch sekund.

| Wtyk | Funkcja |
|------|---------|
| 8    | DRM1/5  |
| 9    | DRM2/6  |
| 10   | DRM3/7  |
| 11   | DRM4/8  |
| 12   | DRM0    |
| 7    | GND-S   |





#### Interfejs logiczny do VDE-AR-N 4105:2018-11

Służy do sterowania i/lub ograniczania mocy wyjściowej falownika.

Falownik można podłączyć do radiowego odbiornika sterującego w celu dynamicznego ograniczania mocy wyjściowej wszystkich falowników w systemie.



Falownik jest wstępnie skonfigurowany do następujących poziomów mocy:

| Wtyk | Nazwa | Falownik                 | Radiowy odbiornik<br>sterujący |
|------|-------|--------------------------|--------------------------------|
| 8    | L1    | Wejście<br>przekaźnika 1 | K1 – przekaźnik<br>wyjściowy 1 |
| 9    | L2    | Wejście<br>przekaźnika 2 | K2 – przekaźnik<br>wyjściowy 2 |
| 10   | L3    | Wejście<br>przekaźnika 3 | K3 – przekaźnik<br>wyjściowy 3 |
| 11   | L4    | Wejście<br>przekaźnika 4 | K4 – przekaźnik<br>wyjściowy 4 |
| 7    | G     | Uziemienie               | Przekaźnik, wspólna<br>masa    |



| L1 | L2 | L3 | L4 | Moc czynna | $\cos(\phi)$ |
|----|----|----|----|------------|--------------|
| 1  | 0  | 0  | 1  | 0%         | 1            |
| 0  | 1  | 0  | 0  | 30%        | 1            |
| 0  | 0  | 1  | 0  | 60%        | 1            |
| 0  | 0  | 0  | 0  | 100%       | 1            |

Status przekaźnika: Zamknięcie to 1, otwarcie to 0.

#### Interfejs logiczny do EN50549-1:2019

Wydawanie mocy czynnej można zakończyć w ciągu pięciu sekund po wydaniu polecenia do interfejsu wejściowego.





### Opis funkcjonalny terminala

| Wtyk | Nazwa | Falownik              | Radiowy odbiornik<br>sterujący |
|------|-------|-----------------------|--------------------------------|
| 8    | L1    | Wejście przekaźnika 1 | K1 – przekaźnik<br>wyjściowy 1 |
| 7    | G     | Uziemienie            | Przekaźnik, uziemienie         |

Falownik jest wstępnie skonfigurowany do następujących poziomów mocy.

Status przekaźnika: Zamknięcie to 1, otwarcie to 0.

| L1 | Moc<br>czynna | Spadek mocy | $\cos(\phi)$ |
|----|---------------|-------------|--------------|
| 1  | 0%            | < 5 sekund  | 1            |
| 0  | 100%          | /           | 1            |

### 5.10.3 Czujnik CT i inteligentny licznik

Istnieją dwie różne konfiguracje systemu umożliwiające uzyskanie informacji o napięciu sieci: przy użyciu wyłącznie czujnika CT (system A) lub kombinacji czujnika CT i licznika energii (system B). Patrz poniższe schematy.





System A: Czujnik CT bez licznika prądu

System B: Czujnik CT z licznikiem prądu







Model HYD 3000… Falownik 6000-EP jest kompatybilny z jednofazowym, inteligentnym licznikiem DDSU666. PIN 15 i PIN 16 służą do komunikacji z inteligentnym licznikiem, co odpowiada PIN 7 i PIN 8 na liczniku energii elektrycznej.

1/2 i 3/4 na liczniku energii elektrycznej są podłączone odpowiednio do sygnałów napięciowych L i N. Prąd musi być podłączony do czujnika CT, czyli 5/6.



Kierunek przepływu prądu w czujniku CT powinien być następujący:



W przypadku konfiguracji bez inteligentnego licznika podłącz czujnik CT do PIN 13 i PIN 14.

### UWAGA

 Aby upewnić się, że czujnik CT jest podłączony we właściwym kierunku, użyj funkcji kalibracji czujnika CT falownika.



## 5.10.4 Port połączeniowy

### UWAGA

- Równolegle można podłączyć do 10 jednostek.
- W przypadku konfiguracji równoległej obciążenie AC powinno być również podłączone równolegle.
- W przypadku przełączania równoległego kilku urządzeń zaleca się stosowanie wspólnego rozłącznika AC dla podłączonych obciążeń zarówno na złączu LOAD, jak i GRID.
- Aby równomiernie rozłożyć obciążenia między falownikami, długość kabla między każdym wyjściem a obciążeniem musi być taka sama.
- Jeżeli maksymalna moc pozorna obciążenia wynosi ponad 110% mocy znamionowej falownika, urządzenia nie wolno podłączać przez terminal AC LOAD – należy podłączyć je bezpośrednio do sieci.
- Pierwszy i ostatni falownik muszą być podłączone do 8pinowych zacisków połączeniowych.

Port połączeniowy służy do umożliwienia konfiguracji równoległej. Falowniki można podłączyć w konfiguracji Master/Slave. W przypadku takiej konfiguracji do pomiaru podłączony jest tylko jeden licznik energii.





Aby zapewnić prawidłowe działanie konfiguracji równoległej, ustaw prawidłowe parametry w ustawieniach falownika:

| Wpis                                                           | Opis                                                                                                                |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Parallel Control<br>(Sterowanie równoległe)                    | Włącz/wyłącz konfigurację równoległą Zarówno<br>jednostka(i) Master, jak i Slave muszą mieć<br>włączoną tę funkcję. |
| Parallel Primary-Replica<br>(Równoległa replika<br>podstawowa) | Wybierz jeden falownik jako Master (Replica), a<br>pozostałe jako Slave (Repliica).                                 |
| Parallel Address (Adres<br>równoległy)                         | Każdy falownik musi mieć przypisany własny adres<br>równoległy.                                                     |

## UWAGA

 Adres równoległy różni się od adresu komunikacyjnego używanego do monitorowania.



# 6 Pierwsze uruchomienie falownika

# 6.1 Test bezpieczeństwa przed pierwszym uruchomieniem

### UWAGA

#### Kontrola zakresu napięcia

 Upewnij się, że wartości napięć DC i AC mieszczą się w dopuszczalnym zakresie falownika.

# 6.2 Kontrola przed włączeniem falownika

Należy upewnić się, że falownik i całe okablowanie zostały zainstalowane prawidłowo, bezpiecznie i w niezawodny sposób oraz że spełniono wszystkie wymagania środowiskowe.

- Falownik jest mocno przymocowany do wspornika montażowego na ścianie;
- Przewody PV+/PV- są solidnie podłączone, a ustawienia polaryzacji i napięcia są prawidłowe;
- Przewody BAT+/BAT- są solidnie podłączone, a ustawienia polaryzacji i napięcia są prawidłowe;
- Odłącznik DC jest prawidłowo podłączony między akumulatorem a falownikiem, i jest wyłączony (OFF).
- 5. Kable GRID i LOAD są prawidłowo podłączone;
- Odłącznik AC jest prawidłowo podłączony między portem GRID falownika a siecią i jest wyłączony (OFF).



- Odłącznik AC jest prawidłowo podłączony między portem LOAD falownika a obciążeniem krytycznym i jest wyłączony (OFF).
- Kabel komunikacyjny został prawidłowo podłączony do akumulatora litowego.

## 6.3 Uruchamianie falownika

- 1. Włącz przełącznik DC.
- 2. Włącz akumulator.
- 3. Włącz odłącznik DC pomiędzy akumulatorem a falownikiem.
- Włącz wyłącznik automatyczny AC między portem GRID falownika a siecią.
- Włącz wyłącznik automatyczny AC między portem LOAD falownika a obciążeniem krytycznym.

Gdy moc wyjściowa DC generowana przez system fotowoltaiczny jest na wystarczającym poziomie, falownik uruchamia się automatycznie. Prawidłowe działanie sygnalizowane jest wyświetleniem na ekranie komunikatu o "stanie prawidłowym".

### UWAGA

- Operatorzy sieci dystrybucyjnych w różnych krajach mają różne wymagania dotyczące podłączenia do sieci falowników fotowoltaicznych sprzężonych z siecią.
- Należy upewnić się, że wybrano właściwy kod kraju zgodnie z wymaganiami władz regionalnych i skonsultuj się z wykwalifikowanym elektrykiem lub pracownikami organów odpowiedzialnych za bezpieczeństwo sieci elektrycznej.



- Firma SOFARSOLAR nie ponosi odpowiedzialności za konsekwencje wybrania nieprawidłowego kodu kraju.
- Wybrany kod kraju ma wpływ na monitorowanie sieci urządzeń. Falownik stale sprawdza ustawione limity i w razie potrzeby odłącza urządzenie od sieci.

## 6.4 Ustawienia wstępne

Przed rozpoczęciem pracy falownika należy ustawić następujące parametry .

| Parametr                    | Opis                                                                                                                                                             |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Język                       | Domyślnym językiem jest angielski.                                                                                                                               |
| Czas                        | Ustaw na czas lokalny.                                                                                                                                           |
| Parametry<br>bezpieczeństwa | Pobierz odpowiedni plik z parametrami<br>bezpieczeństwa dla Twojego kraju z naszej<br>strony internetowej i zaimportuj go do falownika<br>za pomocą pamięci USB. |
| Akumulator                  | Ustaw konfigurację akumulatora zgodnie ze<br>swoimi wymaganiami.                                                                                                 |



#### Ustawianie kodu kraju

#### UWAGA

- Operatorzy sieci dystrybucyjnych w różnych krajach mają różne wymagania dotyczące podłączenia do sieci falowników fotowoltaicznych sprzężonych z siecią.
- Należy upewnić się, że wybrano właściwy kod kraju zgodnie z wymaganiami władz regionalnych i skonsultuj się z wykwalifikowanym elektrykiem lub pracownikami organów odpowiedzialnych za bezpieczeństwo sieci elektrycznej.
- Firma SOFARSOLAR nie ponosi odpowiedzialności za konsekwencje wybrania nieprawidłowego kodu kraju.
- Wybrany kod kraju ma wpływ na monitorowanie sieci urządzeń. Falownik stale sprawdza ustawione limity i w razie potrzeby odłącza urządzenie od sieci.

| Kraj      | Kod     | Norma      |
|-----------|---------|------------|
| Australia | 002-000 | Ogólny     |
|           | 002-001 | AU-WA      |
|           | 002–002 | AU-SA      |
|           | 002–003 | AU-VIC     |
|           | 002–004 | AU-QLD     |
|           | 002–005 | AU-VAR     |
|           | 002–006 | AUSGRID    |
|           | 002–007 | Horizon    |
|           | 002–008 | AU-SA-HV   |
| Belgia    | 008-000 | Ogólny     |
|           | 008–001 | HV         |
| Brazylia  | 028-000 | Sieć 220 V |


| 028-001 | LV                                                                                                                                                                                                                                                                                                    |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 028–002 | Sieć 230 V                                                                                                                                                                                                                                                                                            |
| 028-003 | Sieć 254 V                                                                                                                                                                                                                                                                                            |
| 010-000 | Ogólny                                                                                                                                                                                                                                                                                                |
| 010-001 | Tajwan                                                                                                                                                                                                                                                                                                |
| 010-002 | MV                                                                                                                                                                                                                                                                                                    |
| 010-003 | HV                                                                                                                                                                                                                                                                                                    |
| 107-000 |                                                                                                                                                                                                                                                                                                       |
| 024-000 |                                                                                                                                                                                                                                                                                                       |
| 005-000 | Ogólny                                                                                                                                                                                                                                                                                                |
| 005-001 | TR322                                                                                                                                                                                                                                                                                                 |
| 046-000 | DEWG                                                                                                                                                                                                                                                                                                  |
| 046-001 | DEWG MV                                                                                                                                                                                                                                                                                               |
| 018-000 | EN50438                                                                                                                                                                                                                                                                                               |
| 018-001 | EN50549                                                                                                                                                                                                                                                                                               |
| 018-002 | EN50549-HV                                                                                                                                                                                                                                                                                            |
| 022-000 |                                                                                                                                                                                                                                                                                                       |
| 022-001 |                                                                                                                                                                                                                                                                                                       |
| 011-000 | VDE0126                                                                                                                                                                                                                                                                                               |
| 011-001 | FAR Arrete23                                                                                                                                                                                                                                                                                          |
| 011-002 | VDE0126-HV                                                                                                                                                                                                                                                                                            |
| 000-000 | VDE4105                                                                                                                                                                                                                                                                                               |
| 000-001 | BDEW                                                                                                                                                                                                                                                                                                  |
| 000–002 | VDE0126                                                                                                                                                                                                                                                                                               |
| 000–003 | VDE4105-HV                                                                                                                                                                                                                                                                                            |
| 000–004 | BDEW-HV                                                                                                                                                                                                                                                                                               |
| 006-000 | Kontynent                                                                                                                                                                                                                                                                                             |
| 006-001 | Wyspy                                                                                                                                                                                                                                                                                                 |
| 025-000 |                                                                                                                                                                                                                                                                                                       |
|         | 028-001<br>028-002<br>028-003<br>010-000<br>010-001<br>010-002<br>010-003<br>010-003<br>005-000<br>005-001<br>046-001<br>018-000<br>018-001<br>018-002<br>018-001<br>011-001<br>011-001<br>011-002<br>000-003<br>000-003<br>000-003<br>000-004<br>000-001<br>000-001<br>000-001<br>000-001<br>000-003 |

#### PIERWSZE URUCHOMIENIE FALOWNIKA



| Irlandia                      | 039-000 | EN50438                 |
|-------------------------------|---------|-------------------------|
| Włochy                        | 001-000 | CEI-021 wewn.           |
|                               | 001-001 | CEI–016 Włochy          |
|                               | 001–002 | CEI–021 zewn.           |
|                               | 001–003 | CEI–021 dot. Areti      |
|                               | 001–004 | CEI-021 wewn. wys. nap. |
| Korea                         | 020-000 |                         |
| Litwa                         | 108-000 |                         |
| Meksyk                        | 035-000 | LV                      |
| Holandia                      | 007-000 | Ogólny                  |
| $\boldsymbol{N}$ owa Zelandia | 027-000 |                         |
| Filipiny                      | 026-000 |                         |
| Polska                        | 012-000 | LV                      |
|                               | 012-001 | MV                      |
|                               | 012-002 | HV                      |
| Hiszpania                     | 003-000 | RD1699                  |
|                               | 003–001 | RD1699-HV               |
| Szwecja                       | 021-000 |                         |
| Turcja                        | 004-000 | Ogólny                  |
| Wielka                        | 009-000 | G99                     |
| Brytania                      | 009–001 | G98                     |
|                               | 009–002 | G99-HV                  |
| Słowacja                      | 029-000 | Napęd zm. prędk.        |
|                               | 029-001 | SSE                     |
|                               | 029–002 | ZSD                     |
| Republika                     | 044-000 |                         |
| Południowej<br>Afryki         | 044-001 | HV                      |
| Tajlandia                     | 040-000 | PEA                     |



|                | 040-001 | MEA |
|----------------|---------|-----|
| Ukraina        | 033-000 |     |
|                | 034-000 |     |
| IEC EN61727    | 019-000 |     |
| Szeroki        | 020.000 |     |
| zakres – 60 Hz | 038-000 |     |
| Zakres         |         |     |
| niskiego       | 042 000 |     |
| napięcia –     | 042-000 |     |
| 50 Hz          |         |     |



# 7 Obsługa urządzenia

W tym rozdziale opisano wyświetlacze LCD i LED falownika HYD 3000 ... 6000-EP.

## 7.1 Panel sterowania i wyświetlacz

#### 7.1.1 Przyciski i podświetlenie wyświetlacza



#### Przycisk

| Przycisk | Nazwa  | Opis                                                                                     |
|----------|--------|------------------------------------------------------------------------------------------|
| L        | Powrót | Poprzedni ekran menu,<br>wejdź do menu                                                   |
|          | W górę | Wybór poprzedniej opcji<br>menu, zwiększenie nastawy                                     |
| ↓        | W dół  | Wybór następnej opcji<br>menu, zmniejszenie<br>nastawy                                   |
| Ļ        | Enter  | Wejście do pozycji menu,<br>przejście do następnej<br>cyfry, potwierdzenie<br>ustawienia |



#### Diody LED

On-grid (zielona) WŁ.: "Stan prawidłowy" Miga: Tryb czuwania Off-grid (zielona) WŁ.: "Stan prawidłowy" Miga: Tryb czuwania ALARM (czerwona) WŁ.: "Stan nieprawidłowy"

## 7.2 Ekran standardowy

Na wyświetlaczu wyświetlane są wszystkie istotne informacje o falowniku.



| 1 | Naciśnij przycisk W górę, aby wyświetlić parametry<br>panelu, takie jak prąd, napięcie i moc.                        |
|---|----------------------------------------------------------------------------------------------------------------------|
| Ţ | Naciśnij przycisk W dół, aby wyświetlić parametry sieci, takie jak napięcie, prąd i częstotliwość.                   |
| Ţ | Naciśnij ponownie przycisk W dół, aby wyświetlić parametry akumulatora 1, takie jak prąd, moc, stan naładowania itp. |
| ↓ | Naciśnij ponownie przycisk W dół, aby wyświetlić parametry akumulatora 2, takie jak prąd, moc, stan naładowania itp. |



# 7.3 Energy Storage Mode (Tryb magazynowania energii)

Model HYD 3000 ... 6000-EP oferuje pięć trybów pracy, które określają sposób interakcji falownika z akumulatorem.

#### UWAGA

• Domyślnym trybem pracy jest tryb samoobsługi.

#### 7.3.1 Tryb samoobsługi

W trybie samoobsługi falownik automatycznie ładuje i rozładowuje akumulator zgodnie z następującymi zasadami:

| On-Grid State | Jeśli prąd wytwarzany z panelu jest<br>równy poborowi przez obciążenie<br>(ΔP < 100 W), falownik ani nie<br>ładuje, ani nie rozładowuje<br>akumulatora. |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| On-Grid State | Jeśli prąd wytwarzany z panelu jest<br>większy od poboru przez obciążenie,<br>nadwyżka mocy jest magazynowana<br>w akumulatorze.                        |
| On-Grid State | Jeśli akumulator jest pełny lub jest<br>ładowany z maksymalną mocą,<br>nadmiar energii zostanie<br>przekazany do sieci                                  |







Jeśli prąd wytwarzany z panelu jest mniejszy niż pobór przez obciążenie, akumulator będzie rozładowywany, a energia będzie przesyłana do obciążenia.

Jeśli obciążenie jest większe niż prąd wytwarzany z panelu plus akumulator, falownik będzie importować energię z sieci

Priorytet źródeł zasilania: panele, akumulator, sieć

Priorytet kierowania mocy: obciążenia, akumulator, sieć

## UWAGA

 Jeśli nie jest dozwolony eksport energii do sieci, należy zainstalować licznik energii i/lub czujnik CT oraz włączyć funkcję "Ograniczenie antyzwrotne".

#### 7.3.2 Tryb czasu użytkowania

Użytkownik może ustawić do 4 reguł, kiedy akumulator powinien być ładowany. Każda reguła może zostać włączona lub wyłączona. Reguły obejmują:

- Czas użytkowania (od... do ...)
- SOC (%)
- Ładunek
- Data realizacji



#### • Dni robocze

W poniższym przykładzie akumulator będzie ładowany mocą 1 kW między godziną 2:00 a 4:00, jeśli poziom SOC jest poniżej 70%. Zasada ta obowiązuje codziennie od 22 grudnia do 21 marca.

| Ustawianie trybu czasu użytkowania |         |           |         |
|------------------------------------|---------|-----------|---------|
| Zasada 0                           | Włączon | a/wyłączo | na      |
| Od                                 | Do      | SOC       | Ładunek |
| 02:00 - 04                         | :00     | 70%       | 1000 W  |
|                                    | obowią  |           |         |
| Data                               | zywani  |           |         |
|                                    | а       |           |         |
| 22 gru                             | _       | 21 mar    |         |
| Wybór                              | tygodni |           |         |
| dni                                | а       |           |         |
| Pon Wto Śro Czw Pią Sob Nie        |         |           |         |

#### 7.3.3 Tryb czasowy

W trybie czasowym użytkownik może zdefiniować stałe pory dnia, w których akumulator będzie ładowany lub rozładowywany z określoną mocą.

Można ustawić do 4 reguł (reguła 0, 1, 2 i 3). Jeśli w danym czasie obowiązuje więcej niż jedna reguła, aktywna jest reguła o niższym numerze. Każda reguła może zostać włączona lub wyłączona. Okres ładowania i rozładowania dla reguły można włączyć oddzielnie.

W poniższym przykładzie akumulator będzie ładowany z mocą 2 kW, między 22:00 i 04:00 oraz rozładowywany z mocą 2,5 kW między 14:00 i 16:00.



| Tryb czasowy                    |         |  |
|---------------------------------|---------|--|
| Zasada 0 Włączone / Wyłączone / |         |  |
| Włączone ładowanie / Włączone   |         |  |
| rozładowanie                    |         |  |
| Początek                        | 22.00   |  |
| ładowania                       | 22.00   |  |
| Koniec                          | 05.00   |  |
| ładowania                       | 05.00   |  |
| Moc ładowania                   | 02000 W |  |
| Początek                        | 14.00   |  |
| rozładowania                    | 14.00   |  |
| Koniec                          | 16.00   |  |
| rozładowania                    | 10.00   |  |
| Moc                             |         |  |
| rozładowania                    | 02500 W |  |

#### 7.3.4 Tryb pasywny

W systemach z zewnętrznymi systemami zarządzania energią należy stosować tryb pasywny. Falownik będzie sterowany przez sterownik zewnętrzny za pomocą protokołu Modbus RTU. Aby poznać definicję protokołu Modbus dla tego urządzenia, skontaktuj się z: SOFARSOLAR.





#### 7.3.5 Tryb EPS

Przy włączonym trybie EPS falownik dostarcza energię do obciążenia, kiedy nie jest połączony z siecią, np. gdy nie ma połączenia z siecią publiczną lub w przypadku awarii sieci.

| EPS State         Important           PV1: ON         PV2: ON           2.51kW         0.00kW           0.00kW         2.47kW           2.018-06-28         09:18:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jeśli prąd wytwarzany z panelu jest<br>równy poborowi przez obciążenie<br>(ΔP < 100 W), falownik ani nie<br>ładuje, ani nie rozładowuje<br>akumulatora.                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPS State     Image: Constraint of the state | Jeśli prąd wytwarzany z panelu jest<br>większy od poboru przez obciążenie,<br>nadwyżka mocy jest magazynowana<br>w akumulatorze.<br>Jeśli akumulator jest pełny lub jest<br>ładowany z maksymalną mocą,<br>wytwarzanie prądu z panelu jest<br>zmniejszane poprzez regulację<br>MPPT. |
| EPS State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jeśli wytwarzanie prądu jest<br>mniejsze niż pobór przez<br>obciążenie, akumulator będzie<br>przesyłać prąd do obciążenia.                                                                                                                                                           |



#### 7.4 Struktura menu

#### **UWAGA**

Zmiana niektórych ustawień wymaga wprowadzenia hasła • (standardowe has/o to 0001).

, aby wyświetlić menu główne. Naciśnij przycisk

#### Menu główne

| 1. System Settings<br>(Ustawienia<br>systemowe)        | Zobacz "Menu ustawienia systemowe"                  |
|--------------------------------------------------------|-----------------------------------------------------|
| 2. Advanced Settings<br>(Ustawienia<br>zaawansowane)   | Zobacz "Menu ustawienia zaawansowane"               |
| 3. Energy Statistics<br>(Statystyki energii)           | Zobacz "Menu statystyki energii"                    |
| 4. System<br>information<br>(Informacje                | Zobacz "Menu informacje systemowe"                  |
| 5. Event list (Lista<br>zdarzeń)                       | Zobacz "Ustawianie kodów krajów"                    |
| 6. Software update<br>(Aktualizacja<br>oprogramowania) | Zobacz "Aktualizacja oprogramowania<br>sprzętowego" |

#### Menu "System Settings" (Ustawienia systemowe)

| <b>1. Ustawienia języka</b> Ustawia język falownika. |  |
|------------------------------------------------------|--|
|------------------------------------------------------|--|



| 2. Czas                      | Ustawia czas systemowy falownika. |
|------------------------------|-----------------------------------|
| 3. Parametry bezpieczeństwa  | Parametry bezpieczeństwa są       |
|                              | ustawiane za pomocą pamięci USB   |
|                              | (patrz rozdział 6.4)              |
| 4. Energy Storage Mode (Tryb | Wybierz tryb pracy (tryb domyślny |
| magazynowania energii)       | to tryb samoobsługi)              |
| 5. Auto-Test (Autotest)      | (tylko we Włoszech)               |
| 6. EPS Mode (Tryb EPS)       | Tryb zasilania awaryjnego (EPS)   |
|                              | jest dostępny tylko wtedy, kiedy  |
|                              | podłączony jest akumulator.       |
| 7. Adres komunikacyjny       | Wprowadź adres Modbus (gdy kilka  |
|                              | inwerterów wymaga jednoczesnego   |
|                              | monitorowania), standardowy       |
|                              | adres: 01                         |

#### UWAGA

 Tryb EPS, Anti Reflux, skanowanie krzywej I/V i interfejs logiczny są domyślnie WYŁĄCZONE i muszą zostać włączone przez użytkownika.

#### Menu Advanced Settings (Ustawienia zaawansowane)

| 1. Battery Parameter         | Ustaw parametr akumulatora       |
|------------------------------|----------------------------------|
| (Parametr akumulatora)       |                                  |
| 2. Anti Reflux               | Ogranicz eksport prądu do sieci  |
| 3. IV Curve Scan (Skanowanie | Znajdź maksymalny punkt mocy     |
| krzywej IV)                  |                                  |
| 4. Interfejs logiczny        | Monitoruj interfejsy logiczne    |
| 5. Factory Reset             | Usuń dane (dane energii/zdarzeń) |
| (Przywrócenie ustawień       |                                  |



| fabrycznych)                                |                                          |
|---------------------------------------------|------------------------------------------|
| 6. Parallel Setting (Ustawienia równoległe) | Ustawienia systemu równoległego          |
| 7. Bluetooth Reset (Resetuj<br>Bluetooth)   | Zresetuj połączenie Bluetooth            |
| 8. CT Calibration (Kalibracja<br>CT)        | Skalibruj kierunek i fazę czujnika<br>CT |
|                                             |                                          |

#### Menu Energy Statistics (Statystyki energii)

To menu wyświetla statystyki energii systemu (w kWh) zebrane przez falownik, w tym wytwarzanie, obciążenie, eksport, import, ładowanie i rozładowanie.

Naciśnij przycisk W DÓŁ, aby przełączać pomiędzy DZIŚ, MIESIĄC, ROK, ŻYWOTNOŚĆ.

#### Menu System information (Informacje systemowe)

To menu wyświetla informacje o podłączonym falowniku, akumulatorze i ustawionych parametrach bezpieczeństwa.

- 1. Inverter Info (Informacje o falowniku)
- 2. Battery Info (Informacje o akumulatorze)
- 3. Parametry bezpieczeństwa

#### Menu listy zdarzeń

Lista zdarzeń służy do wyświetlania nagrań zdarzeń w czasie rzeczywistym, w tym łącznej liczby zdarzeń i każdego konkretnego



numeru identyfikacyjnego i czasu wydarzenia. Najnowsze wydarzenia są wymienione na górze.

- 1. Lista zdarzeń bieżących
- 2. Lista zdarzeń historycznych

#### Software update (Aktualizacja oprogramowania)

Użytkownik może zaktualizować oprogramowanie za pomocą przenośnego dysku USB. Firma SOFARSOLAR zapewni aktualizację oprogramowania, gdy będzie to konieczne.

- Wyłącz przełączniki DC i AC, a następnie zdejmij osłonę gniazda komunikacyjnego. Jeśli podłączono linię RS485, upewnij się, że nakrętka jest poluzowana. Upewnij się, że linia komunikacyjna nie jest pod napięciem. Zdejmij osłonę, aby zapobiec poluzowaniu się podłączonego złącza komunikacyjnego.
- 2. Włóż pamięć USB do komputera.
- SOFARSOLAR wyśle aktualizację oprogramowania do użytkownika.
- 4. Rozpakuj plik i skopiuj oryginalny plik na pamięć USB. Uwaga: Plik aktualizacji oprogramowania sprzętowego musi znajdować się w podfolderze "firmware"!
- 5. Włóż pamięć USB do złącza USB falownika.
- 6. Włącz przełącznik DC i przejdź do punktu menu "5. Software update (Aktualizacja oprogramowania)" na wyświetlaczu LCD.
- 7. Wprowadź hasło (standardowe hasło to 0715).



- System będzie następnie sukcesywnie aktualizował procesory główne i pomocnicze DSP oraz ARM. Zwracaj uwagę na wyświetlacze.
- Jeśli pojawi się komunikat o błędzie, wyłącz przełącznik DC i poczekaj, aż ekran LCD zgaśnie. Następnie ponownie włącz przełącznik DC i kontynuuj aktualizację od kroku 5.
- Po zakończeniu aktualizacji wyłącz przełącznik DC i poczekaj, aż wyświetlacz LCD zgaśnie.
- 11. Przyłącz wodoszczelne połączenie komunikacyjne.
- 12. Ponownie włącz przełącznik DC i wyłącznik automatyczny AC.
- Aktualną wersję oprogramowania można sprawdzić w menu "3. Software version (Wersja oprogramowania)" w menu SystemInfo (Informacje o systemie).



## 8 Postępowanie w razie problemów

## 8.1 Rozwiązywanie problemów

Niniejsza sekcja zawiera informacje i procedury dotyczące usuwania potencjalnych problemów z falownikiem.

Aby rozwiązać problemy, wykonaj następujące czynności:

 Sprawdź ostrzeżenia, komunikaty o błędach lub kody błędów wyświetlane na ekranie falownika.

Jeśli na ekranie nie są wyświetlane żadne informacje o błędzie, sprawdź, czy zostały spełnione następujące wymogi:

- Czy falownik został ustawiony w czystym, suchym i dobrze wentylowanym miejscu?
- Czy przełącznik DC jest w pozycji ON?
- Czy kable są odpowiednio zwymiarowane i wystarczająco krótkie?
- Czy złącza wejściowe, wyjściowe i okablowanie są w dobrym stanie?
- Czy ustawienia konfiguracyjne instalacji są prawidłowe?
- Czy wyświetlacz i kable komunikacyjne są prawidłowo podłączone i nieuszkodzone?

Aby wyświetlić zarejestrowane problemy, wykonaj następujące czynności: Przytrzymaj przycisk, aby wyświetlić główne menu interfejsu standardowego. Wybierz opcję "2. Event list (Lista zdarzeń)" i przytrzymaj przycisk, aby wyświetlić listę zdarzeń.



#### Alarm zwarcia doziemnego

Falownik jest zgodny z normą IEC 62109-2, paragraf 13.9 dotyczący ochrony przed zwarciem doziemnym.

W przypadku wystąpienia alarmu zwarcia doziemnego, błąd jest wyświetlany na ekranie LCD, zapala się czerwona lampka, a błąd można znaleźć w dzienniku historii błędów.

#### WSKAZÓWKA

 W przypadku urządzeń wyposażonych w rejestrator zdalny, informacje o alarmie można przeglądać na portalu monitorowania i pobierać za pomocą aplikacji na smartfona.





## Event list (Lista zdarzeń)

| Kod  | Nazwa   | Opis                                 | Rozwiązanie                  |
|------|---------|--------------------------------------|------------------------------|
| ID00 | GridOVP | Zbyt wysokie napięcie w sieci        | Jeśli alarm występuje        |
| 1    |         | energetycznej                        | sporadycznie, przyczyną      |
| ID00 | GridUVP | Napięcie w sieci jest zbyt niskie.   | może być sieć                |
| 2    |         |                                      | energetyczna. Po             |
| ID00 | GridOFP | Częstotliwość sieci jest zbyt        | przywróceniu                 |
| 3    |         | wysoka.                              | prawidłowego działania       |
| ID00 | GridUFP | Częstotliwość sieci jest zbyt niska. | zasilania sieciowego         |
| 4    |         |                                      | falownik automatycznie       |
|      |         |                                      | wróci do normalnego trybu    |
|      |         |                                      | pracy.                       |
|      |         |                                      |                              |
|      |         |                                      | Jeśli alarm występuje        |
|      |         |                                      | często, sprawdź, czy         |
|      |         |                                      | napięcie/częstotliwość       |
|      |         |                                      | sieci mieści się             |
|      |         |                                      | w dopuszczalnym zakresie.    |
|      |         |                                      | Jeśli tak, sprawdź           |
|      |         |                                      | wyłącznik automatyczny AC    |
|      |         |                                      | i kable AC falownika.        |
|      |         |                                      |                              |
|      |         |                                      | Jesli alarm powtarza się,    |
|      |         |                                      | skontaktuj się z działem     |
|      |         |                                      | pomocy technicznej w celu    |
|      |         |                                      | dostosowania limitów         |
|      |         |                                      | napięcia i częstotliwości po |
|      |         |                                      | uprzednim uzyskaniu zgody    |
|      |         |                                      | lokalnego operatora sieci    |
|      |         |                                      | energetycznej.               |



| ID00 | GFCI | Błąd uziemienia | Jeśli błąd występuje        |
|------|------|-----------------|-----------------------------|
| 5    |      |                 | sporadycznie, przyczyną     |
|      |      |                 | mogą być czynniki           |
|      |      |                 | zewnętrzne. Falownik        |
|      |      |                 | automatycznie wróci do      |
|      |      |                 | normalnego trybu pracy.     |
|      |      |                 | Jeśli błąd występuje często |
|      |      |                 | i trwa dłuższy czas,        |
|      |      |                 | sprawdź, czy rezystancja    |
|      |      |                 | izolacji między             |
|      |      |                 | generatorem PV a ziemią     |
|      |      |                 | (masą) nie jest zbyt niska  |
|      |      |                 | oraz sprawdź izolację kabla |
|      |      |                 | PV.                         |

| ID00 | OVRT fault  | Funkcja OVRT nie działa         |                                              |
|------|-------------|---------------------------------|----------------------------------------------|
| 6    |             | prawidłowo.                     |                                              |
| ID00 | LVRT fault  | Funkcja LVRT nie działa         | _                                            |
| 7    |             | prawidłowo.                     |                                              |
| ID00 | IslandFault | Błąd zabezpieczenia wyspowego   |                                              |
| 8    |             | trybu pracy.                    | ID006-041 to błędy                           |
| ID00 | GridOVPIns  | Przepięcie przejściowe napięcia | wewnętrzne falownika.                        |
| 9    | tant1       | sieciowego 1.                   | Wyłącz przełącznik DC,                       |
| ID01 | GridOVPIns  | Przepięcie przejściowe napięcia | odczekaj 5 minut,                            |
| 0    | tant2       | sieciowego 2.                   | a następnie włącz                            |
| ID01 | VGridLineF  | Awaria napięcia sieciowego.     | <ul> <li>przełącznik DC. Sprawdz,</li> </ul> |
| 1    | ault        |                                 | czy brąd został usunięty.                    |
| ID01 | InvOVP      | Przepięcie falownika.           |                                              |
| 2    |             |                                 |                                              |
| ID01 | HwADFault   | Błąd pomiaru prądu sieci.       | - technicznej.                               |
| 7    | lGrid       |                                 | _                                            |
| ID01 | HwADFault   | Błąd pomiaru prądu DC.          |                                              |
| 8    | DCI         |                                 | _                                            |
| ID01 | HwADFault   | Błąd próbkowania napięcia       |                                              |



| 9    | VGrid(DC)   | sieciowego (DC).                 |
|------|-------------|----------------------------------|
| ID02 | HwADFault   | Błąd próbkowania napięcia        |
| 0    | VGrid(AC)   | sieciowego (AC).                 |
| ID02 | GFCIDevice  | Błąd próbkowania prądu upływu    |
| 1    | Fault(DC)   | (DC).                            |
| ID02 | GFCIDevice  | Błąd próbkowania prądu upływu    |
| 2    | Fault(AC)   | (AC).                            |
| ID02 | HwADFault   | Błąd próbkowania napięcia DC     |
| 3    | DCV         | obciążenia.                      |
| ID02 | HwADFault   | Błąd próbkowania natężenia       |
| 4    | ldc         | wejściowego DC.                  |
| ID02 | HwADErrD    | ¥                                |
| 5    | CI(DC)      |                                  |
| ID02 | HwADErrld   | ¥                                |
| 6    | cBranch     |                                  |
| ID02 | Consistent  | Próbka GFCI między głównym       |
| 9    | Fault_GFCI  | procesorem DSP a podrzędnym      |
|      |             | procesorem DSP nie jest spójna.  |
| ID03 | Consistent  | Próbka napięcia liniowego między |
| 0    | Fault_Vgrid | głównym procesorem DSP           |
|      |             | a podrzędnym procesorem DSP      |
|      |             | nie jest spójna.                 |
| ID03 | SpiCommF    | Błąd komunikacji SPI (DC)        |
| 3    | ault(DC)    |                                  |
| ID03 | SpiCommF    | Błąd komunikacji SPI (AC)        |
| 4    | ault(AC)    |                                  |
| ID03 | SChip_Faul  | Błąd układu (DC)                 |
| 5    | t           |                                  |
| ID03 | MChip_Fau   | Błąd układu głównego (AC)        |
| 6    | lt          |                                  |
| ID03 | HwAuxPow    | Błąd napięcia pomocniczego       |
| 7    | erFault     |                                  |



| ID04 | RelayFail  | Błąd rozpoznawania przekaźnika.  |                             |
|------|------------|----------------------------------|-----------------------------|
| 1    |            |                                  |                             |
| ID04 | IsoFault   | Rezystancja izolacji jest zbyt   | Sprawdź rezystancję         |
| 2    |            | niska.                           | izolacji między             |
|      |            |                                  | generatorem PV a ziemią     |
|      |            |                                  | (masą) i usuń błąd          |
|      |            |                                  | w przypadku zwarcia.        |
| ID04 | PEConnect  | Błąd uziemienia                  | Sprawdź, czy przewód PE     |
| 3    | Fault      |                                  | działa.                     |
| ID04 | PV Config  | Nieprawidłowa konfiguracja trybu | Sprawdź ustawienie trybu    |
| 4    | Error      | wejścia                          | wejścia MPPT (tryb          |
|      |            |                                  | równoległy/tryb niezależny) |
|      |            |                                  | falownika i zmień w razie   |
|      |            |                                  | potrzeby.                   |
| ID04 | CTDisconn  | Błąd CT                          | Sprawdź, czy okablowanie    |
| 5    | ect        |                                  | przekładnika prądowego      |
|      |            |                                  | jest prawidłowe.            |
| ID04 | TempFault  | Błąd temperatury akumulatora     | Sprawdzić, czy akumulator   |
| 9    | _Bat       |                                  | nie rozgrzewa się za        |
|      |            |                                  | bardzo.                     |
|      |            |                                  |                             |
|      |            |                                  | Sprawdź, czy czujnik        |
|      |            |                                  | temperatury został          |
|      |            |                                  | prawidłowo podłączony do    |
|      |            |                                  | akumulatora.                |
| ID05 | TempFault  | Błąd temperatury radiatora 1.    | Upewnij się, że falownik    |
| 0    | _HeatSink1 |                                  | został zainstalowany        |
| ID05 | TempFault  | Błąd temperatury radiatora 2.    | w chłodnym, dobrze          |
| 1    | _HeatSink2 |                                  | wentylowanym miejscu,       |
| ID05 | TempFault  | Błąd temperatury radiatora 3.    | z dala od bezpośredniego    |
| 2    | _HeatSin3  |                                  | światła słonecznego.        |
| ID05 | TempFault  | Błąd temperatury radiatora 4.    |                             |
| 3    | _HeatSink4 |                                  | Upewnij się, że falownik    |



| ID05 | TempFault  | Błąd temperatury radiatora 5.       | został zainstalowany        |
|------|------------|-------------------------------------|-----------------------------|
| 4    | _HeatSin5  |                                     | w pozycji pionowej,         |
| ID05 | TempFault  | Błąd temperatury radiatora 6.       | a temperatura otoczenia     |
| 5    | _HeatSin6  |                                     | jest niższa od wartości     |
| ID05 | TempFault  | Błąd temperatury otoczenia 1.       | granicznej temperatury      |
| 7    | _Env1      |                                     | falownika.                  |
| ID05 | TempFault  | Błąd temperatury otoczenia 2.       | _                           |
| 8    | _Env2      |                                     |                             |
| ID05 | TempFault  | Błąd modułu temperatury 1.          | -                           |
| 9    | _Inv1      |                                     |                             |
| ID06 | TempFault  | Błąd modułu temperatury 2.          | -                           |
| 0    | _Inv2      |                                     |                             |
| ID06 | TempFault  | Błąd modułu temperatury 3.          | _                           |
| 1    | _Inv3      |                                     |                             |
| ID06 | TempDiffEr |                                     |                             |
| 2    | rlnv       |                                     |                             |
| ID06 | VbusRmsU   | Asymetryczna wartość skuteczna      | Błąd wewnętrzny             |
| 5    | nbalance   | napięcia magistrali.                | falownika. Wyłącz falownik, |
| ID06 | VbusInstan | Wartość przejściowa napięcia        | odczekaj 5 minut,           |
| 6    | tUnbalance | magistrali jest niezrównoważona     | a następnie włącz go        |
| ID06 | BusUVP     | Napięcie DC magistrali podczas      | ponownie.                   |
| 7    |            | podłączania sieci jest zbyt niskie. | _                           |
| ID06 | BusZVP     | Napięcie DC magistrali jest zbyt    | Jeśli błąd będzie się       |
| 8    |            | niskie                              | powtarzał, skontaktuj się z |
|      |            |                                     | pomocą techniczną.          |
| ID06 | PVOVP      | Napięcie wejściowe PV jest zbyt     | Sprawdź, czy napięcie       |
| 9    |            | wysokie                             | szeregowe PV (Voc) jest     |
|      |            |                                     | wyższe niż maksymalne       |
|      |            |                                     | napięcie wejściowe          |
|      |            |                                     | falownika. Jeśli tak to     |
|      |            |                                     | dostosuj liczbę modułów     |
|      |            |                                     | PV w szeregu. Po korekcie   |
|      |            |                                     | falownik automatycznie      |



powraca do stanu normalnego.

| ID07 | BatOVP     | Przepięcie akumulatora          | Sprawdź, czy napięcie       |
|------|------------|---------------------------------|-----------------------------|
| 0    |            |                                 | akumulatora jest wyższe     |
|      |            |                                 | niż maksymalne napięcie     |
|      |            |                                 | wejściowe falownika. Jeśli  |
|      |            |                                 | tak to dostosuj liczbę      |
|      |            |                                 | modułów akumulatora         |
|      |            |                                 | w szeregu.                  |
| ID07 | LLCBusOV   | Ochrona przeciwprzepięciowa     |                             |
| 1    | Р          | magistrali LLC.                 |                             |
| ID07 | SwBusRms   | Napięcie magistrali falownika,  | -                           |
| 2    | OVP        | wartość skuteczna programowanej |                             |
|      |            | ochrony przeciwprzepięciowej.   |                             |
| ID07 | SwBusInsta | Napięcie magistrali falownika,  | -                           |
| 3    | ntOVP      | wartość chwilowa programowanej  | Błąd wewnętrzny             |
|      |            | ochrony przeciwprzepięciowej.   | falownika. Wyłącz falownik, |
| ID08 | SwBatOCP   | Zabezpieczenie nadprądowe w     | odczekaj 5 minut,           |
| 1    |            | oprogramowaniu akumulatora.     | a następnie włącz go        |
| ID08 | DciOCP     | Zabezpieczenie nadprądowe Dci   | ponownie.                   |
| 2    |            |                                 |                             |
| ID08 | SwOCPInst  | Zabezpieczenie chwilowego prądu | Jeśli błąd będzie się       |
| 3    | ant        | wyjściowego                     | powtarzał, skontaktuj się z |
| ID08 | SwBuckBo   | Sekwencja oprogramowania        | pomocą techniczną.          |
| 4    | ostOCP     | BuckBoost                       |                             |
| ID08 | SwAcRmsO   | Zabezpieczenie prądu            |                             |
| 5    | CP         | wyjściowego RMS                 |                             |
| ID08 | SwPvOCPI   | Ochrona programowana przed      | -                           |
| 6    | nstant     | prąd przetężeniowym PV          |                             |
| ID08 | IpvUnbalan | Przepływy PV w nierównomiernej  | -                           |



| 7    | се         | równoległości                   |                          |
|------|------------|---------------------------------|--------------------------|
| ID08 | lacUnbalan | Niezrównoważony prąd wyjściowy  |                          |
| 8    | се         |                                 |                          |
| ID09 | SwAcCBCF   |                                 |                          |
| 1    | ault       |                                 |                          |
| ID09 | HwLLCBus   | Przepięcie sprzętowe magistrali |                          |
| 7    | OVP        | LLC                             |                          |
| ID09 | HwBusOVP   | Przepięcie sprzętowe magistrali | •                        |
| 8    |            | falownika                       |                          |
| ID09 | HwBuckBo   | Przepełnienia sprzętowe         |                          |
| 9    | ostOCP     | BuckBoost                       |                          |
| ID10 | HwBatOCP   | Przepełnienia sprzętowe         |                          |
| 0    |            | akumulatora                     |                          |
| ID10 | HwPVOCP    | Przepełnienia sprzętowe PV      |                          |
| 2    |            |                                 |                          |
| ID10 | HwACOCP    | Prąd wejściowy jest zbyt wysoki |                          |
| 3    |            | i uruchomił ochronę sprzętową   |                          |
| ID10 | MeterCom   | Błąd komunikacji z modułem      | Sprawdzić komunikację z  |
| 5    | mFault     | licznika                        | licznikiem.              |
| ID11 | Overload1  | Ochrona przed przeciążeniem 1   |                          |
| 0    |            |                                 | Sprawdź czy falownik     |
| ID11 | Overload2  | Ochrona przed przeciążeniem 2   | pracuje w stanje         |
| 1    |            |                                 | pracuje w stanie         |
| ID11 | Overload3  | Ochrona przed przeciążeniem 3   | przeciązema.             |
| 2    |            |                                 |                          |
| ID11 | OverTemp   | Falownik został zdławiony z     | Upewnij się, że falownik |
| 3    | Derating   | powodu zbyt wysokiej            | został zainstalowany     |
|      |            | temperatury.                    | w chłodnym, dobrze       |
|      |            |                                 | wentylowanym miejscu,    |
|      |            |                                 | z dala od bezpośredniego |
|      |            |                                 | światła słonecznego.     |
|      |            |                                 |                          |
|      |            |                                 | Upewnij się, że falownik |





|                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                    | został zainstalowany                                                                                                                                                                   |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                    | w pozycji pionowej,                                                                                                                                                                    |
|                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                    | a temperatura otoczenia                                                                                                                                                                |
|                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                    | jest niższa od wartości                                                                                                                                                                |
|                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                    | granicznej temperatury                                                                                                                                                                 |
|                                                               |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                    | falownika.                                                                                                                                                                             |
| ID11                                                          | FreqDerati                                                                                                                  | Częstotliwość sieci jest zbyt                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| 4                                                             | ng                                                                                                                          | wysoka.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                        |
| ID11                                                          | FreqLoadin                                                                                                                  | Częstotliwość sieci jest zbyt niska.                                                                                                                                                                                                                                                                                                                               | Upewnij się, że                                                                                                                                                                        |
| 5                                                             | g                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                    | częstotliwość i napięcie                                                                                                                                                               |
| ID11                                                          | VoltDeratin                                                                                                                 | Napięcie AC jest zbyt wysokie.                                                                                                                                                                                                                                                                                                                                     | sieci mieszczą się                                                                                                                                                                     |
| 6                                                             | g                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                    | w dopuszczalnym zakresie.                                                                                                                                                              |
| ID11                                                          | VoltLoadin                                                                                                                  | Napięcie AC jest zbyt niskie.                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                      |
| 7                                                             | g                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        |
| ID12                                                          | BatLowVolt                                                                                                                  | Ochrona przed zbyt niskim                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                        |
| 4                                                             | ageAlarm                                                                                                                    | napięciem akumulatora.                                                                                                                                                                                                                                                                                                                                             | Sprawuz, czy napięcie                                                                                                                                                                  |
| ID12                                                          | BatLowVolt                                                                                                                  | Wyłączanie przy niskim napięciu                                                                                                                                                                                                                                                                                                                                    | nie jest styt niekie                                                                                                                                                                   |
| 5                                                             | ageShut                                                                                                                     | baterii.                                                                                                                                                                                                                                                                                                                                                           | me jest zbyt mskie.                                                                                                                                                                    |
| ID12                                                          | unrecoverH                                                                                                                  | Prąd wejściowy jest zbyt wysoki                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        |
| •                                                             |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        |
| 9                                                             | wAcOCP                                                                                                                      | i spowodował nieodwracalny błąd                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        |
| 9                                                             | wAcOCP                                                                                                                      | i spowodował nieodwracalny błąd<br>sprzętowy.                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |
| 9<br>ID13                                                     | wAcOCP<br>unrecoverB                                                                                                        | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt                                                                                                                                                                                                                                                                                     | Błąd wewnętrzny                                                                                                                                                                        |
| 9<br>ID13<br>0                                                | wAcOCP<br>unrecoverB<br>usOVP                                                                                               | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało                                                                                                                                                                                                                                                            | Błąd wewnętrzny<br>falownika. Wyłącz falownik,                                                                                                                                         |
| 9<br>ID13<br>0                                                | wAcOCP<br>unrecoverB<br>usOVP                                                                                               | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.                                                                                                                                                                                                                           | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,                                                                                                                    |
| 9<br>ID13<br>0<br>ID13                                        | wAcOCP<br>unrecoverB<br>usOVP<br>unrecoverH                                                                                 | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.<br>Trwała awaria sprzętu magistrali z                                                                                                                                                                                     | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,<br>a następnie włącz go                                                                                            |
| 9<br>ID13<br>0<br>ID13<br>1                                   | wAcOCP<br>unrecoverB<br>usOVP<br>unrecoverH<br>wBusOVP                                                                      | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.<br>Trwała awaria sprzętu magistrali z<br>powodu przepięcia.                                                                                                                                                               | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,<br>a następnie włącz go<br>ponownie.                                                                               |
| 9<br>ID13<br>0<br>ID13<br>1<br>ID13                           | wAcOCP<br>unrecoverB<br>usOVP<br>unrecoverH<br>wBusOVP<br>unrecoverIp                                                       | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.<br>Trwała awaria sprzętu magistrali z<br>powodu przepięcia.<br>Prąd wejściowy jest                                                                                                                                        | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,<br>a następnie włącz go<br>ponownie.                                                                               |
| 9<br>ID13<br>0<br>ID13<br>1<br>ID13<br>2                      | wAcOCP<br>unrecoverB<br>usOVP<br>unrecoverH<br>wBusOVP<br>unrecoverIp<br>vUnbalance                                         | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.<br>Trwała awaria sprzętu magistrali z<br>powodu przepięcia.<br>Prąd wejściowy jest<br>niezbalansowany i spowodował                                                                                                        | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,<br>a następnie włącz go<br>ponownie.<br>Jeśli błąd będzie się                                                      |
| 9<br>ID13<br>0<br>ID13<br>1<br>ID13<br>2                      | wAcOCP<br>unrecoverB<br>usOVP<br>unrecoverH<br>wBusOVP<br>unrecoverIp<br>vUnbalance                                         | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.<br>Trwała awaria sprzętu magistrali z<br>powodu przepięcia.<br>Prąd wejściowy jest<br>niezbalansowany i spowodował<br>nieodwracalny błąd.                                                                                 | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,<br>a następnie włącz go<br>ponownie.<br>Jeśli błąd będzie się<br>powtarzał, skontaktuj się z                       |
| 9<br>ID13<br>0<br>ID13<br>1<br>ID13<br>2<br>ID13              | wAcOCP<br>unrecoverB<br>usOVP<br>unrecoverH<br>wBusOVP<br>unrecoverIp<br>vUnbalance<br>unrecoverE                           | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.<br>Trwała awaria sprzętu magistrali z<br>powodu przepięcia.<br>Prąd wejściowy jest<br>niezbalansowany i spowodował<br>nieodwracalny błąd.<br>Błąd stały przepięcia akumulatora                                            | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,<br>a następnie włącz go<br>ponownie.<br>Jeśli błąd będzie się<br>powtarzał, skontaktuj się z<br>pomocą techniczną. |
| 9<br>ID13<br>0<br>ID13<br>1<br>ID13<br>2<br>ID13<br>3         | wAcOCP<br>unrecoverB<br>usOVP<br>unrecoverH<br>wBusOVP<br>unrecoverIp<br>vUnbalance<br>unrecoverE<br>PSBatOCP               | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.<br>Trwała awaria sprzętu magistrali z<br>powodu przepięcia.<br>Prąd wejściowy jest<br>niezbalansowany i spowodował<br>nieodwracalny błąd.<br>Błąd stały przepięcia akumulatora<br>w trybie EPS.                           | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,<br>a następnie włącz go<br>ponownie.<br>Jeśli błąd będzie się<br>powtarzał, skontaktuj się z<br>pomocą techniczną. |
| 9<br>ID13<br>0<br>ID13<br>1<br>ID13<br>2<br>ID13<br>3<br>ID13 | wAcOCP<br>unrecoverB<br>usOVP<br>unrecoverH<br>wBusOVP<br>unrecoverIp<br>vUnbalance<br>unrecoverE<br>PSBatOCP<br>unrecoverA | i spowodował nieodwracalny błąd<br>sprzętowy.<br>Napięcie magistrali jest zbyt<br>wysokie i spowodowało<br>nieodwracalny błąd sprzętowy.<br>Trwała awaria sprzętu magistrali z<br>powodu przepięcia.<br>Prąd wejściowy jest<br>niezbalansowany i spowodował<br>nieodwracalny błąd.<br>Błąd stały przepięcia akumulatora<br>w trybie EPS.<br>Błąd stały spowodowany | Błąd wewnętrzny<br>falownika. Wyłącz falownik,<br>odczekaj 5 minut,<br>a następnie włącz go<br>ponownie.<br>Jeśli błąd będzie się<br>powtarzał, skontaktuj się z<br>pomocą techniczną. |



| ÷ |  |
|---|--|
| ι |  |

| ID13 | unrecoverla | Błąd stały niezrównoważonego      | -                                |
|------|-------------|-----------------------------------|----------------------------------|
| 5    | cUnbalance  | prądu wyjściowego.                |                                  |
| ID13 | unrecoverP  | Błąd stały konfiguracji trybu     |                                  |
| 7    | vConfigErro | wejścia.                          | Sprawdz ustawienie trypu         |
|      | r           |                                   | wejscia wippi (tryp              |
| ID13 | unrecoverP  | Błąd stały przetężenia wejścia.   | - rownoległy/tryb niezależny)    |
| 8    | VOCPInsta   |                                   | Talownika i zmien w razie        |
|      | nt          |                                   | potrzeby.                        |
| ID13 | unrecoverH  | Błąd stały przetężenia sprzętu    |                                  |
| 9    | wPVOCP      | wejściowego.                      | Błąd wewnętrzny                  |
| ID14 | unrecoverR  | Błąd stały przekaźnika sieciowego | -<br>falownika. Wyłącz falownik, |
| 0    | elayFail    |                                   | odczekaj 5 minut,                |
| ID14 | unrecoverV  | Napięcie magistrali jest          | –<br>a następnie włącz go        |
| 1    | busUnbala   | niezbalansowane i spowodowało     | ponownie.                        |
|      | nce         | nieodwracalny błąd.               |                                  |
| ID14 | PermSpdFa   |                                   | _<br>Jeśli błąd będzie się       |
| 2    | il(DC)      |                                   | powtarzał, skontaktuj się z      |
| ID14 | PermSpdFa   |                                   | pomocą techniczną.               |
| 3    | il(AC)      |                                   |                                  |
| ID14 | USBFault    | Błąd USB                          | Sprawdź połączenie USB           |
| 5    |             |                                   | falownika.                       |
| ID14 | WifiFault   | Błąd sieci WiFi                   | Sprawdź połączenie WiFi          |
| 6    |             |                                   | falownika.                       |
| ID14 | BluetoothF  | Błąd Bluetooth                    | Sprawdź połączenie               |
| 7    | ault        |                                   | Bluetooth falownika.             |
| ID14 | RTCFault    | Awaria zegara RTC                 | Błąd wewnętrzny                  |
| 8    |             |                                   | falownika. Wyłącz falownik,      |
| ID14 | CommEEP     | Błąd pamięci EEPROM karty         | odczekaj 5 minut,                |
| 9    | ROMFault    | komunikacyjnej.                   | a następnie włącz go             |
| ID15 | FlashFault  | Błąd pamięci flash karty          | ponownie.                        |
| 0    |             | komunikacyjnej.                   | Jeśli błąd będzie się            |



| ID15 | SafetyVerF  |                                 | powtarzał, skontaktuj się z |
|------|-------------|---------------------------------|-----------------------------|
| 2    | rault       |                                 | pomocą techniczną.          |
| ID15 | SciCommL    | Błąd komunikacji SCI (DC)       | -                           |
| 3    | ose(DC)     |                                 |                             |
| ID15 | SciCommL    | Błąd komunikacji SCI (AC)       | -                           |
| 4    | ose(AC)     |                                 |                             |
| ID15 | SciCommL    | Błąd komunikacji SCI            | -                           |
| 5    | ose(Fuse)   | (bezpiecznik)                   |                             |
| ID15 | SoftVerErro | Niespójne wersje oprogramowania | Pobierz aktualne            |
| 6    | r           |                                 | oprogramowanie sprzętowe    |
|      |             |                                 | ze strony internetowej      |
|      |             |                                 | i ponownie uruchom          |
|      |             |                                 | aktualizację                |
|      |             |                                 | oprogramowania. Jeśli błąd  |
|      |             |                                 | będzie się powtarzał,       |
|      |             |                                 | skontaktuj się z pomocą     |
|      |             |                                 | techniczną.                 |
| ID15 | BMSComm     | Błąd komunikacji akumulatora    | Upewnij się, że akumulator  |
| 7    | unicatonFa  | litowego                        | jest kompatybilny           |
|      | ult         |                                 | z falownikiem.              |
|      |             |                                 |                             |
|      |             |                                 | Zalecana jest komunikacja   |
|      |             |                                 | CAN. Sprawdź przewód        |
|      |             |                                 | komunikacyjny lub           |
|      |             |                                 | połączenie z akumulatorem   |
|      |             |                                 | i falownikiem pod kątem     |
|      |             |                                 | usterek.                    |
| ID16 | ForceShutd  | Wymuszone wyłączenie            | Falownik został             |
| 1    | own         |                                 | przymusowo odłączony.       |
| ID16 | RemoteShu   | Zdalne wyłączenie               | Falownik został zdalnie     |
| 2    | tdown       |                                 | wyłączony.                  |
| ID16 | Drms0Shut   | Wyłączenie DRM 0                | Falownik jest wyposażony    |
| 3    | down        |                                 | w funkcję wyłączenia        |
|      |             |                                 |                             |



|      |             |                                    | Drms0.                           |  |  |
|------|-------------|------------------------------------|----------------------------------|--|--|
| ID16 | RemoteDer   | Falownik zmniejszył swoją moc      |                                  |  |  |
| 5    | ating       | wyjściową zdalnie.                 |                                  |  |  |
| ID16 | LogicInterf | Falownik zmniejszył swoją moc      | -<br>Ta wiadomość ma             |  |  |
| 6    | aceDeratin  | wyjściową przez wejście cyfrowe.   | wyłącznie charakter              |  |  |
|      | g           |                                    | informacyjny i nie jest          |  |  |
| ID16 | AlarmAntiR  | Redukcja mocy wyjściowej ze        | -<br>błędem.                     |  |  |
| 7    | efluxing    | względu na konfigurację czujnika   |                                  |  |  |
|      |             | prądu lub licznika inteligentnego  |                                  |  |  |
| ID16 | FanFault1   | Awaria wentylatora 1               |                                  |  |  |
| 9    |             |                                    |                                  |  |  |
| ID17 | FanFault2   | Awaria wentylatora 2               | -                                |  |  |
| 0    |             |                                    |                                  |  |  |
| ID17 | FanFault3   | Awaria wentylatora 3               | -                                |  |  |
| 1    |             |                                    | Coroudá ozu odpowiodni           |  |  |
| ID17 | FanFault4   | Awaria wentylatora 4               | - Sprawuz, czy oupowieuni        |  |  |
| 2    |             |                                    |                                  |  |  |
| ID17 | FanFault5   | Awaria wentylatora 5               | - normanne.                      |  |  |
| 3    |             |                                    |                                  |  |  |
| ID17 | FanFault6   | Awaria wentylatora 6               | -                                |  |  |
| 4    |             |                                    |                                  |  |  |
| ID17 | FanFault7   | Awaria wentylatora 7               | -                                |  |  |
| 5    |             |                                    |                                  |  |  |
| ID17 | MeterCom    | Błąd komunikacji z modułem         | Sprawdź komunikację z            |  |  |
| 6    | mLose       | licznika                           | licznikiem.                      |  |  |
| ID17 | BMS OVP     | Alarm przepięcia BMS               | Błąd wewnętrzny                  |  |  |
| 7    |             |                                    | podłączonego akumulatora         |  |  |
| ID17 | BMS UVP     | Alarm podnapięcia BMS              | -<br>litowego. Wyłącz falownik i |  |  |
| 8    |             |                                    | akumulator litowy,               |  |  |
| ID17 | BMS OTP     | Ostrzeżenie o wysokiej             | -<br>odczekaj 5 minut,           |  |  |
| 9    |             | temperaturze BMS.                  | a następnie włącz go             |  |  |
| ID18 | BMS UTP     | Ostrzeżenie o niskiej temperaturze | ponownie.                        |  |  |



| 0         |           | BMS.                                                                     |                                                                            |  |  |
|-----------|-----------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| ID18<br>1 | BMS OCP   | Ostrzeżenie o przeciążeniu BMS<br>podczas ładowania<br>i rozładowywania. | Jeśli błąd będzie się<br>powtarzał, skontaktuj się z<br>pomocą techniczną. |  |  |
| ID18<br>2 | BMS Short | Alarm zwarcia BMS.                                                       |                                                                            |  |  |

## 8.2 Konserwacja

Zasadniczo falowniki nie wymagają codziennej lub rutynowej konserwacji. Przed przystąpieniem do czyszczenia należy upewnić się, że przełącznik DC i wyłącznik automatyczny AC między falownikiem a siecią energetyczną zostały wyłączone. Odczekaj co najmniej 5 minut przed przystąpieniem do czyszczenia.

#### 8.2.1 Czyszczenie falownika

Falownik należy czyścić dmuchawą i suchą, miękką ścierką lub miękką szczotką z włosia. NIE czyść falownika wodą, żrącymi chemikaliami, środkami czyszczącymi itp.

#### 8.2.2 Czyszczenie radiatora

W celu zapewnienia prawidłowej, długotrwałej pracy falownika, należy upewnić się, że wokół radiatora jest wystarczająco dużo miejsca na wentylację. Sprawdź radiator pod kątem przeszkód (kurzu, śniegu itp.) i usuń je, jeśli są obecne. Radiator należy czyścić dmuchawą i suchą, miękką ścierką lub miękką szczotką z włosia. NIE czyść radiatora wodą, żrącymi chemikaliami, środkami czyszczącymi itp.



# 9 Dane techniczne

| Arkusz danych                                | HYD 3000-<br>EP                                                             | HYD 3680-<br>EP | HYD 4000-<br>EP | HYD 4600-<br>EP | HYD 5000-<br>EP* | HYD 5500-<br>EP | HYD 6000-<br>EP |
|----------------------------------------------|-----------------------------------------------------------------------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|
| Parametry akumulatora                        |                                                                             |                 |                 |                 |                  |                 |                 |
| Typ akumulatora                              |                                                                             |                 | litowo-jono     | wa, kwasow      | o-ołowiowa       |                 |                 |
| Nominalne napięcie akumulatora<br>(V)        | à                                                                           |                 |                 | 48              |                  |                 |                 |
| Zakres napięcia akumulatora (V)              |                                                                             |                 |                 | 42-58           |                  |                 |                 |
| Pojemność akumulatora (Ah)                   |                                                                             |                 |                 | 50-2000         |                  |                 |                 |
| Maks. moc<br>ładowania/rozładowywania (W)    | 3750                                                                        | 4000            | 4250            | 5000            |                  |                 |                 |
| Maks. prąd ładowania (A)                     | 75                                                                          | 80              | 85              |                 | 10               | 00              |                 |
| Maks. prąd rozładowania (A)                  | 75                                                                          | 80              | 85              |                 | 1(               | 00              |                 |
| Krzywa ładowania (litowo-<br>jonowa)         | BMS                                                                         |                 |                 |                 |                  |                 |                 |
| Krzywa ładowania (kwasowo-<br>ołowiowa)      | 3-stopniowa adaptacja z konserwacją                                         |                 |                 |                 |                  |                 |                 |
| Głębokość rozładowania                       | litowo-jonowa: 0-90% DOD regulowana, kwasowo-ołowiowa: 0-50% DOD regulowana |                 |                 |                 |                  |                 |                 |
| Wejście DC (strona PV)                       |                                                                             |                 |                 |                 |                  |                 |                 |
| Zalecana maks. moc wejściowa<br>PV (Wp)      | 4500                                                                        | 5400            | 6000            | 6900            | 75               | 00              | 9000            |
| Maks. moc DC dla pojedynczego<br>MPPT (W)    | a pojedynczego                                                              |                 | 3500            |                 |                  |                 |                 |
| Maks. napięcie wejściowe (V)                 | 600                                                                         |                 |                 |                 |                  |                 |                 |
| Napięcie rozruchu (V)                        | 100                                                                         |                 |                 |                 |                  |                 |                 |
| Znamionowe napięcie wejściowe<br>(V)         | e 360                                                                       |                 |                 |                 |                  |                 |                 |
| Zakres napięcia roboczego<br>MPPT (V)        | 90-550                                                                      |                 |                 |                 |                  |                 |                 |
| Zakres napięcia MPPT przy<br>pełnej mocy (V) | 160-500                                                                     | 180-500         | 200-500         | 230-500         | 250              | -500            | 300-500         |
| Liczba MPPT                                  |                                                                             |                 |                 | 2               |                  |                 |                 |



| Maks. prąd wejściowy na każdy<br>MPPT (A)                       | 13 / 13                                   |              |                        |             |       |          |      |
|-----------------------------------------------------------------|-------------------------------------------|--------------|------------------------|-------------|-------|----------|------|
| Maks. wejściowy prąd zwarcia<br>na MPPT (A)                     |                                           |              |                        | 18 / 18     |       |          |      |
| Wyjście/wejście prądu przemier                                  | inego (po st                              | ronie sieci) |                        |             |       |          |      |
| Nominalna moc prądu<br>zmiennego (W)                            | 3000                                      | 3680         | 4000                   | 4600        | 50    | 00       | 6000 |
| Maks. moc wyjściowa prądu<br>przemiennego do                    | 3300                                      | 3680         | 4400                   | 4600        | 5000  | 5500     | 6000 |
| Maks. moc prądu przemiennego<br>pobierana z sieci (VA)          | 6000                                      | 7360         | 0 8000 9200 10000 1200 |             | 12000 |          |      |
| Maks. prąd przemienny<br>wysyłany do sieci energetycznej<br>(A) | 15                                        | 16           | 20                     | 20.9        | 21.7  | 25       | 27.3 |
| Maks. prąd przemienny<br>pobierany z sieci energetycznej<br>(A) | 27.3                                      | 32           | 36.4                   | 41.8        | 43    | 3.4      | 54.6 |
| Nominalne napięcie sieci                                        |                                           |              | L/                     | N / PE, 230 | Vac   |          |      |
| Zakres napięcia sieci                                           | 180 Vac-276 Vac (zgodnie z normą lokalną) |              |                        |             |       |          |      |
| Częstotliwość nominalna                                         | 50 Hz / 60 Hz                             |              |                        |             |       |          |      |
| THDi na wyjściu (przy wyjściu<br>nominalnym)                    | < 3%                                      |              |                        |             |       |          |      |
| Współczynnik mocy                                               | 1 domyślna strona (+/-0.8 regulowana)     |              |                        |             |       |          |      |
| Wyjście AC (zasilanie<br>awaryjne)                              |                                           |              |                        |             |       |          |      |
| Maks. moc pozorna (VA)                                          | 3000                                      | 3680         | 4000                   | 4600        |       | 5000     |      |
| Szczytowa moc wyjściowa, czas<br>trwania (VA, s)                | 3600, 60                                  | 4400, 60     | 4800, 60               | 5520, 60    |       | 6000, 60 |      |
| Maks. prąd wyjściowy (A)                                        | 13.6                                      | 16           | 18.2                   | 20.9        |       | 22.7     |      |
| Napięcie znamionowe,<br>częstotliwość                           | 220 V / 230 V, 50 / 60 Hz                 |              |                        |             |       |          |      |
| THDv (@ obciążenie<br>symetryczne)                              | < 3%                                      |              |                        |             |       |          |      |
| Czas przełączania                                               | 10 ms domyślna strona                     |              |                        |             |       |          |      |
| Efektywność                                                     |                                           |              |                        |             |       |          |      |
| Wydajność MPPT                                                  |                                           |              |                        | 99.9%       |       |          |      |

#### DANE TECHNICZNE



| Maks. sprawność inwertera<br>solarnego             | 97.6%                                            | 97.8%                             | 98.0% |  |  |  |
|----------------------------------------------------|--------------------------------------------------|-----------------------------------|-------|--|--|--|
| Wydajność europejska falownika<br>solarnego        | 97.2%                                            | 97.3%                             | 97.5% |  |  |  |
| Maks. wydajność ładowania<br>akumulatora           | 94.6%                                            |                                   |       |  |  |  |
| Maks. wydajność<br>rozładowywania akumulatora      | 94.6%                                            |                                   |       |  |  |  |
| Ochrona                                            |                                                  |                                   |       |  |  |  |
| Zabezpieczenie przed odwrotną<br>polaryzacją PV    | odwrotną Tak                                     |                                   |       |  |  |  |
| Wykrywanie izolacji PV                             |                                                  | Tak                               |       |  |  |  |
| Zabezpieczenie wykrywające<br>brak uziemienia      |                                                  | Tak                               |       |  |  |  |
| Zabezpieczenie nadprądowe                          | Tak                                              |                                   |       |  |  |  |
| Ochrona przepięciowa                               | Tak                                              |                                   |       |  |  |  |
| Wyłącznik DC                                       | Tak                                              |                                   |       |  |  |  |
| Funkcja stabilnej odpowiedzi<br>częstotliwościowej | Opcjonalnie                                      |                                   |       |  |  |  |
| Ochrona SPD                                        | MOV: Type III standard                           |                                   |       |  |  |  |
| Dane ogólne                                        |                                                  |                                   |       |  |  |  |
| Zakres temperatury otoczenia                       | -30°C+60°C (powyżej 45                           | °C obniżenia wartości znamionowyc | h)    |  |  |  |
| Autokonsumpcja energii w trybie<br>gotowości (W)   | < 10                                             |                                   |       |  |  |  |
| Topologia                                          | a Izolacja wysokiej częstotliwości (dla baterii) |                                   |       |  |  |  |
| Stopień ochrony                                    | IP65                                             |                                   |       |  |  |  |
| Dopuszczalny zakres wilgotności<br>względnej       | 0100%                                            |                                   |       |  |  |  |
| Komunikacja                                        | RS485 / WiFi / Bluetooth / CAN2.0 / Ethermet     |                                   |       |  |  |  |
| Klasa ochronności                                  | Class I                                          |                                   |       |  |  |  |
| Maks. wysokość pracy                               | 4000 m                                           |                                   |       |  |  |  |
| Podłączenie czujnika prądu                         | Zewnętrzna strona                                |                                   |       |  |  |  |
| Hałas                                              | < 25 dB                                          |                                   |       |  |  |  |



| Masa (kg)             | 21.5                                                                                                               |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Chłodzenie            | Naturalny                                                                                                          |  |  |
| Wymiar (mm)           | 482*503*183 mm                                                                                                     |  |  |
| Wyświetlacz           | LCD, aplikacja przez Bluetooth                                                                                     |  |  |
| Gwarancja             | Standardowo 5 lat, opcjonalnie: do 20 lat                                                                          |  |  |
| Certyfikaty i normy   |                                                                                                                    |  |  |
| EMC                   | EN 61000-6-2, EN 61000-6-3, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11, EN 61000-3-12                               |  |  |
| Normy bezpieczeństwa  | IEC 62109-1 / 2, IEC62040-1, IEC62116, IEC 61727, IEC 61683, IEC 60068 (1, 2, 14, 30)                              |  |  |
| Normy dotyczące sieci | VDE V 0124-100, V 0126-1-1, VDE-AR-N 4105, CEI 0-21, EN 50549, G83 / G59 / G98 / G99, UTE C15-712-1, UNE 206 007-1 |  |  |



Shenzhen SOFARSOLAR Co., Ltd. 11/F, Gaoxinqi Technology Building, District 67, XingDong Community, XinAn Street, Bao'An District, Shenzhen, Chiny

> SOFARSOLAR GmbH Krämerstrasse 20 72764 Reutlingen Niemcy

E-mail: <u>service@sofarsolar.com</u> Strona internetowa: <u>www.sofarsolar.com</u>